$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Controlled Lattice Thermal Conductivity of Transparent Conductive Oxide Thin Film via Localized Vibration of Doping Atoms 원문보기

Nanomaterials, v.11 no.9, 2021년, pp.2363 -   

Choi, Young Joong (Department of Materials Science and Engineering, Pusan National University, Busan 46241, Korea) ,  Lee, Ho Yun (yjchoi0782@pusan.ac.kr (Y.J.C.)) ,  Kim, Seohan (dbs0770@pusan.ac.kr (H.Y.L.)) ,  Song, Pung Keun (Department of Materials Science and Engineering, Pusan National University, Busan 46241, Korea)

Abstract AI-Helper 아이콘AI-Helper

Amorphization using impurity doping is a promising approach to improve the thermoelectric properties of tin-doped indium oxide (ITO) thin films. However, an abnormal phenomenon has been observed where an excessive concentration of doped atoms increases the lattice thermal conductivity (κl). To...

주제어

참고문헌 (43)

  1. 1. Mahmoudinezhad S. Atouei S.A. Cotfas P. Cotfas D. Rosendahl L.A. Rezania A. Experimental and numerical study on the transient behavior of multi-junction solar cell-thermoelectric generator hybrid system Energy Convers. Manag. 2019 184 448 455 10.1016/j.enconman.2019.01.081 

  2. 2. Park K.-I. Xu S. Liu Y. Hwang G.-T. Kang S.-J.L. Wang Z.L. Lee K.J. Piezoelectric BaTiO 3 thin film nanogenerator on plastic substrates Nano Lett. 2010 10 4939 4943 10.1021/nl102959k 21050010 

  3. 3. Wu C. Wang A.C. Ding W. Guo H. Wang Z.L. Triboelectric nanogenerator: A foundation of the energy for the new era Adv. Energy Mater. 2019 9 1802906 10.1002/aenm.201802906 

  4. 4. Wang J. Zhou S. Zhang Z. Yurchenko D. High-performance piezoelectric wind energy harvester with Y-shaped attachments Energy Convers. Manag. 2019 181 645 652 10.1016/j.enconman.2018.12.034 

  5. 5. Yarlagadda V. Carpenter M.K. Moylan T.E. Kukreja R.S. Koestner R. Gu W. Thompson L. Kongkanand A. Boosting fuel cell performance with accessible carbon mesopores ACS Energy Lett. 2018 3 618 621 10.1021/acsenergylett.8b00186 

  6. 6. Juang Z.-Y. Tseng C.-C. Shi Y. Hsieh W.-P. Ryuzaki S. Saito N. Hsiung C.-E. Chang W.-H. Hernandez Y. Han Y. Graphene-Au nanoparticle based vertical heterostructures: A novel route towards high-ZT Thermoelectric devices Nano Energy 2017 38 385 391 10.1016/j.nanoen.2017.06.004 

  7. 7. Liu S. Lan M. Li G. Piao Y. Ahmoum H. Wang Q. Breaking the tradeoff among thermoelectric parameters by multi composite of porosity and CNT in AZO films Energy 2021 225 120320 10.1016/j.energy.2021.120320 

  8. 8. Liu S. Li G. Lan M. Zhu M. Mori T. Wang Q. Improvement of Thermoelectric Properties of Evaporated ZnO:Al Films by CNT and Au Nanocomposites J. Phys. Chem. C 2020 124 12713 12722 10.1021/acs.jpcc.0c01311 

  9. 9. Tambasov I.A. Voronin A.S. Evsevskaya N.P. Volochaev M.N. Fadeev Y.V. Simunin M.M. Aleksandrovsky A.S. Smolyarova T.E. Abelian S.R. Tambasova E.V. Thermoelectric properties of low-cost transparent single wall carbon nanotube thin films obtained by vacuum filtration Phys. E 2019 114 113619 10.1016/j.physe.2019.113619 

  10. 10. Tomeda A. Ishibe T. Taniguchi T. Okuhata R. Watanabe K. Nakamura Y. Enhanced thermoelectric performance of Ga-doped ZnO film by controlling crystal quality for transparent thermoelectric films Thin Solid Films 2018 666 185 190 10.1016/j.tsf.2018.09.045 

  11. 11. Yang C. Souchay D. Kneiß M. Bogner M. Wei H.M. Lorenz M. Oeckler O. Benstetter G. Fu Y.Q. Grundmann M. Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film Nat. Commun. 2017 8 16076 10.1038/ncomms16076 28681842 

  12. 12. Bell L.E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems Science 2008 321 1457 1461 10.1126/science.1158899 18787160 

  13. 13. Hong J.-E. Lee S.-K. Yoon S.-G. Enhanced thermoelectric properties of thermal treated Sb 2 Te 3 thin films J. Alloys Compd. 2014 583 111 115 10.1016/j.jallcom.2013.08.164 

  14. 14. Jeong M.-W. Na S. Shin H. Park H.-B. Lee H.-J. Joo Y.-C. Thermomechanical in situ monitoring of Bi 2 Te 3 thin film and its relationship with microstructure and thermoelectric performances Electron. Mater. Lett. 2018 14 426 431 10.1007/s13391-018-0054-x 

  15. 15. Loureiro J. Neves N. Barros R. Mateus T. Santos R. Filonovich S. Reparaz S. Sotomayor-Torres C.M. Wyczisk F. Divay L. Transparent aluminium zinc oxide thin films with enhanced thermoelectric properties J. Mater. Chem. A 2014 2 6649 6655 10.1039/C3TA15052F 

  16. 16. Ali H. Characterization of a new transparent-conducting material of ZnO doped ITO thin films Phys. Status Solidi A 2005 202 2742 2752 10.1002/pssa.200521045 

  17. 17. Chung S.M. Shin J.H. Cheong W.-S. Hwang C.-S. Cho K.I. Kim Y.J. Characteristics of Ti-doped ITO films grown by DC magnetron sputtering Ceram. Int. 2012 38 S617 S621 10.1016/j.ceramint.2011.05.110 

  18. 18. Fallah H.R. Ghasemi M. Hassanzadeh A. Influence of heat treatment on structural, electrical, impedance and optical properties of nanocrystalline ITO films grown on glass at room temperature prepared by electron beam evaporation Phys. E 2007 39 69 74 10.1016/j.physe.2007.01.003 

  19. 19. Hu Y. Diao X. Wang C. Hao W. Wang T. Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering Vacuum 2004 75 183 188 10.1016/j.vacuum.2004.01.081 

  20. 20. Wu C. Wu C. Sturm J. Kahn A. Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices Appl. Phys. Lett. 1997 70 1348 1350 10.1063/1.118575 

  21. 21. Yang C.-H. Lee S.-C. Lin T.-C. Zhuang W.-Y. Opto-electronic properties of titanium-doped indium?tin-oxide films deposited by RF magnetron sputtering at room temperature Mat. Sci. Eng. B-Adv. 2006 134 68 75 10.1016/j.mseb.2006.07.027 

  22. 22. Kang Y. Kwon S. Choi J. Cho Y. Song P. Properties of Ce-doped ITO films deposited on polymer substrate by DC magnetron sputtering Thin Solid Films 2010 518 3081 3084 10.1016/j.tsf.2009.08.016 

  23. 23. Nomura K. Ohta H. Takagi A. Kamiya T. Hirano M. Hosono H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors Nature 2004 432 488 492 10.1038/nature03090 15565150 

  24. 24. Lee H.Y. Yang I.J. Yoon J.-H. Jin S.-H. Kim S. Song P.K. Thermoelectric Properties of Zinc-Doped Indium Tin Oxide Thin Films Prepared Using the Magnetron Co-Sputtering Method Coatings 2019 9 788 10.3390/coatings9120788 

  25. 25. Cocemasov A. Brinzari V. Jeong D.-G. Korotcenkov G. Vatavu S. Lee J.-S. Nika D.L. Thermal transport evolution due to nanostructural transformations in Ga-doped indium-tin-oxide thin films Nanomaterials 2021 11 1126 10.3390/nano11051126 33925345 

  26. 26. Lan J.-L. Liu Y. Lin Y.-H. Nan C.-W. Cai Q. Yang X. Enhanced thermoelectric performance of In 2 O 3 -based ceramics via Nanostructuring and Point Defect Engineering Sci. Rep. 2015 5 1 6 10.1038/srep07783 25586762 

  27. 27. Lide D.R. CRC Handbook of Chemistry and Physics CRC Press Boca Raton, FL, USA 2004 Volume 85 

  28. 28. Yagi T. Tamano K. Sato Y. Taketoshi N. Baba T. Shigesato Y. Analysis on thermal properties of tin doped indium oxide films by picosecond thermoreflectance measurement J. Vac. Sci. Technol. A 2005 23 1180 1186 10.1116/1.1872014 

  29. 29. Carreras P. Antony A. Roldan R. Nos O. Frigeri P.A. Asensi J.M. Bertomeu J. Transparent conducting thin films by co-sputtering of ZnO-ITO targets Phys. Status Solidi C 2010 7 953 956 10.1002/pssc.200982852 

  30. 30. Liu D.-S. Wu C.-C. Lee C.-T. A transparent and conductive film prepared by RF magnetron cosputtering system at room temperature Jpn. J. Appl. Phys. 2005 44 5119 10.1143/JJAP.44.5119 

  31. 31. Snyder G.J. Toberer E.S. Complex thermoelectric materials Nat. Mater. 2008 7 105 114 10.1038/nmat2090 18219332 

  32. 32. Ishibe T. Tomeda A. Komatsubara Y. Kitaura R. Uenuma M. Uraoka Y. Yamashita Y. Nakamura Y. Carrier and phonon transport control by domain engineering for high-performance transparent thin film thermoelectric generator Appl. Phys. Lett. 2021 118 151601 10.1063/5.0048577 

  33. 33. Liu S. Li G. Lan M. Zhu M. Miyazaki K. Wang Q. Role of intrinsic defects on thermoelectric properties of ZnO:Al films Ceram. Int. 2021 47 17760 17767 10.1016/j.ceramint.2021.03.098 

  34. 34. Petit T. Puskar L. FTIR spectroscopy of nanodiamonds: Methods and interpretation Diam. Relat. Mater. 2018 89 52 66 10.1016/j.diamond.2018.08.005 

  35. 35. Winiarski J. Tylus W. Winiarska K. Szczygieł I. Szczygieł B. XPS and FT-IR characterization of selected synthetic corrosion products of zinc expected in neutral environment containing chloride ions J. Spectrosc. 2018 2018 2079278 10.1155/2018/2079278 

  36. 36. Wu N.C. Shi E.W. Zheng Y.Q. Li W.J. Effect of pH of medium on hydrothermal synthesis of nanocrystalline cerium (IV) oxide powders J. Am. Ceram. Soc. 2002 85 2462 2468 10.1111/j.1151-2916.2002.tb00481.x 

  37. 37. Zamiri R. Abbastabar Ahangar H. Kaushal A. Zakaria A. Zamiri G. Tobaldi D. Ferreira J. Dielectrical properties of CeO 2 nanoparticles at different temperatures PLoS ONE 2015 10 e0122989 25910071 

  38. 38. Petrov T. Markova-Deneva I. Chauvet O. Nikolov R. Denev I. Sem and Ft-Ir Spectroscopy Study of Cu, Sn AND Cu-Sn Nanoparticles J. Chem. Technol. Metall. 2012 47 2 

  39. 39. Zhu G. Guo L. Shen X. Ji Z. Chen K. Zhou H. Monodispersed In 2 O 3 mesoporous nanospheres: One-step facile synthesis and the improved gas-sensing performance Sens. Actuators B Chem. 2015 220 977 985 10.1016/j.snb.2015.06.036 

  40. 40. Chang K.-C. Tsai T.-M. Chang T.-C. Zhang R. Chen K.-H. Chen J.-H. Chen M.-C. Huang H.-C. Zhang W. Lin C.-Y. Improvement of resistive switching characteristic in silicon oxide-based RRAM through hydride-oxidation on indium tin oxide electrode by supercritical CO 2 fluid IEEE Electron. Device Lett. 2015 36 558 560 10.1109/LED.2015.2426055 

  41. 41. Raja K. Ramesh P. Geetha D. Structural, FTIR and photoluminescence studies of Fe doped ZnO nanopowder by co-precipitation method Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014 131 183 188 10.1016/j.saa.2014.03.047 24835724 

  42. 42. Ali A. Ansari A.A. Kaushik A. Solanki P.R. Barik A. Pandey M. Malhotra B. Nanostructured zinc oxide film for urea sensor Mater. Lett. 2009 63 2473 2475 10.1016/j.matlet.2009.08.038 

  43. 43. Liu W. Shi X. Hong M. Yang L. Moshwan R. Chen Z.-G. Zou J. Ag doping induced abnormal lattice thermal conductivity in Cu 2 Se J. Mater. Chem. C 2018 6 13225 13231 10.1039/C8TC04129F 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로