$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Powder deposition mechanism during powder spreading with different spreader geometries in powder bed fusion additive manufacturing

Powder technology, v.395, 2022년, pp.802 - 810  

Wang, Lin ,  Zhou, Zongyan ,  Li, Erlei ,  Shen, Haopeng ,  Yu, Aibing

초록이 없습니다.

참고문헌 (48)

  1. Gibson 2014 Additive Manufacturing Technologies 

  2. Bus. Horiz. Attaran 60 677 2017 10.1016/j.bushor.2017.05.011 The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing 

  3. Int. J. Adv. Manuf. Technol. Huang 67 1191 2013 10.1007/s00170-012-4558-5 Additive manufacturing and its societal impact: a literature review 

  4. Sun 55 2017 Laser additive manufacturing: materials, design, technologies, and applications Powder Bed Fusion Processes: An Overview 

  5. Bhavar 251 2017 A Review on Powder Bed Fusion Technology of Metal Additive Manufacturing, Additive Manufacturing Handbook 

  6. Géotechnique Cundall 29 47 1979 10.1680/geot.1979.29.1.47 A discrete numerical model for granular assemblies 

  7. Metall. Mater. Trans. A Mindt 47 3811 2016 10.1007/s11661-016-3470-2 Powder bed layer characteristics: the overseen first-order process input 

  8. Powder Technol. Haeri 306 45 2017 10.1016/j.powtec.2016.11.002 Discrete element simulation and experimental study of powder spreading process in additive manufacturing 

  9. Powder Technol. Haeri 321 94 2017 10.1016/j.powtec.2017.08.011 Optimisation of blade type spreaders for powder bed preparation in additive manufacturing using DEM simulations 

  10. Powder Technol. Parteli 288 96 2016 10.1016/j.powtec.2015.10.035 Particle-based simulation of powder application in additive manufacturing 

  11. Powder Technol. Han 352 91 2019 10.1016/j.powtec.2019.04.057 Discrete element simulation of powder layer thickness in laser additive manufacturing 

  12. Mater. Des. He 196 109102 2020 10.1016/j.matdes.2020.109102 A digital-based approach for characterising spread powder layer in additive manufacturing 

  13. Add. Manufact. He 36 101685 2020 Linking particle properties to layer characteristics: discrete element modelling of cohesive fine powder spreading in additive manufacturing 

  14. Add. Manufact. Yao 37 101707 2021 Dynamic investigation on the powder spreading during selective laser melting additive manufacturing 

  15. Powder Technol. Yao 390 197 2021 10.1016/j.powtec.2021.05.082 Numerical insights on the spreading of practical 316 L stainless steel powder in SLM additive manufacturing 

  16. Powder Technol. Nan 338 253 2018 10.1016/j.powtec.2018.07.030 Jamming during particle spreading in additive manufacturing 

  17. Acta Mater. Chen 179 158 2019 10.1016/j.actamat.2019.08.030 Powder-spreading mechanisms in powder-bed-based additive manufacturing: experiments and computational modeling 

  18. Powder Technol. Wang 363 602 2020 10.1016/j.powtec.2019.12.048 Adhesion effects on spreading of metal powders in selective laser melting 

  19. Powder Technol. Wang 384 211 2021 10.1016/j.powtec.2021.02.022 Effects of spreader geometry on powder spreading process in powder bed additive manufacturing 

  20. Powder Technol. Nan 342 801 2019 10.1016/j.powtec.2018.10.056 Numerical simulation of powder flow during spreading in additive manufacturing 

  21. Int. J. Heat Mass Transfer Gusarov 46 1103 2003 10.1016/S0017-9310(02)00370-8 Contact thermal conductivity of a powder bed in selective laser sintering 

  22. Sun 102 1991 Proceedings of Solid Freeform Fabrication Symposium A three dimensional model for selective laser sintering 

  23. Appl. Surf. Sci. Bertrand 254 989 2007 10.1016/j.apsusc.2007.08.085 Ceramic Components Manufacturing by Selective Laser Sintering 

  24. J. Mater. Process. Technol. Ziegelmeier 215 239 2015 10.1016/j.jmatprotec.2014.07.029 An experimental study into the effects of bulk and flow behaviour of laser sintering polymer powders on resulting part properties 

  25. J. Mater. Process. Technol. Körner 211 978 2011 10.1016/j.jmatprotec.2010.12.016 Mesoscopic simulation of selective beam melting processes 

  26. Rapid Prototyp. J. Tolochko 10 78 2004 10.1108/13552540410526953 Balling processes during selective laser treatment of powders 

  27. Comput. Mech. Zohdi 54 171 2014 10.1007/s00466-014-1012-6 Additive particle deposition and selective laser processing-a computational manufacturing framework 

  28. Gürtler 1099 2014 Influence of powder distribution on process stability in laser beam melting: Analysis of melt pool dynamics by numerical simulations, Solid freeform fabrication symposium 

  29. Acta Mater. Khairallah 108 36 2016 10.1016/j.actamat.2016.02.014 Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones 

  30. Mater. Rausch 10 1117 2017 10.3390/ma10101117 Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density 

  31. Metals Haferkamp 11 418 2021 10.3390/met11030418 The Influence of Particle Shape, Powder Flowability, and Powder Layer Density on Part Density in Laser Powder Bed Fusion 

  32. Powder Technol. Nan 364 811 2020 10.1016/j.powtec.2019.12.023 Numerical simulation of particle flow and segregation during roller spreading process in additive manufacturing 

  33. Int. J. Mach. Tools Manuf. Chen 103553 2020 Packing quality of powder layer during counter-rolling-type powder spreading process in additive manufacturing 

  34. Gouge 3 2018 An introduction to additive manufacturing processes and their modeling challenges, Thermo-mechanical modeling of additive manufacturing 

  35. Powder Technol. Phua 394 632 2021 10.1016/j.powtec.2021.08.058 The effect of recoater geometry and speed on granular convection and size segregation in powder bed fusion 

  36. J. Manuf. Process. Singh 25 185 2017 10.1016/j.jmapro.2016.11.006 Material Issues in Additive Manufacturing: A Review 

  37. Adv. Mater. Technol. Li 5 418 2020 10.1002/admt.201900981 A Review on Functionally Graded Materials and Structures via Additive Manufacturing: From Multi‐scale Design to Versatile Functional Properties 

  38. Rep. Prog. Phys. Behringer 82 2018 The Physics of Jamming for Granular Materials: A Review 

  39. Soft Matter Verbücheln 11 4295 2015 10.1039/C5SM00760G Helical Inner-wall Texture Prevents Jamming in Granular Pipe Flows 

  40. Ahn 1421 2007 Discharge of Granular Materials From Hoppers With Various Exit Geometries 

  41. Powder Technol. Huang 377 350 2021 10.1016/j.powtec.2020.08.084 Optimised curved hoppers with maximum mass discharge rate-an experimental study 

  42. Progr. Comput. Fluid Dyn. Int. J. Kloss 12 140 2012 10.1504/PCFD.2012.047457 Models, algorithms and validation for opensource DEM and CFD-DEM 

  43. J. Comput. Phys. Plimpton 117 1 1995 10.1006/jcph.1995.1039 Fast parallel algorithms for short-range molecular dynamics 

  44. Phys. Rev. E Everaers 67 2003 10.1103/PhysRevE.67.041710 Interaction potentials for soft and hard ellipsoids 

  45. Sci. Rep. Parteli 4 6227 2014 10.1038/srep06227 Attractive particle interaction forces and packing density of fine glass powders 

  46. Phys. Rev. E Yang 62 3900 2000 10.1103/PhysRevE.62.3900 Computer Simulation of the Packing of Fine Particles 

  47. Additive Manufacturing Snow 28 78 2019 10.1016/j.addma.2019.04.017 On the Development of Powder Spreadability Metrics and Feedstock Requirements for Powder Bed Fusion Additive Manufacturing 

  48. Powder Technol. Meier 343 855 2019 10.1016/j.powtec.2018.11.072 Modeling and characterization of cohesion in fine metal powders with a focus on additive manufacturing process simulations 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로