$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Immobilization of Candida rugosa Lipase on Magnetic Biosilica Particles: Hydrolysis and Transesterification Studies 원문보기

Biotechnology and bioprocess engineering : BBE, v.26 no.5, 2021년, pp.827 - 840  

Acıkgoz-Erkaya, Ilkay ,  Bayramoglu, Gulay ,  Akbulut, Aydin ,  Arica, Mehmet Yakup

초록이 없습니다.

참고문헌 (59)

  1. Biotechnol. Bioprocess Eng. J F Zhao 24 326 2019 10.1007/s12257-018-0458-3 Zhao, J. F., T. Wang, J. P. Lin, L. R. Yang, and M. B. Wu (2019) Preparation of high-purity 1,3-diacylglycerol using performance-enhanced lipase immobilized on nanosized magnetite particles. Biotechnol. Bioprocess Eng. 24: 326-336. 

  2. Org. Geochem. H Liu 113 17 2017 10.1016/j.orggeochem.2017.08.008 Liu, H. and W. Liu (2017) Concentration and distributions of fatty acids in algae, submerged plants and terrestrial plants from the northeastern Tibetan Plateau. Org. Geochem. 113: 17-26. 

  3. Renew. Sustain. Energy Rev. E Quayson 134 110355 2020 10.1016/j.rser.2020.110355 Quayson, E., J. Amoah, S. Hama, A. Kondo, and C. Ogino (2020) Immobilized lipases for biodiesel production: Current and future greening opportunities. Renew. Sustain. Energy Rev. 134: 110355. 

  4. Energy Convers. Manag. Z Amini 141 339 2017 10.1016/j.enconman.2016.09.049 Amini, Z., Z. Ilham, H. C. Ong, H. Mazaheri, and W. H. Chen (2017) State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Convers. Manag. 141: 339-353. 

  5. Biotechnol. Adv. J Mulinari 42 107581 2020 10.1016/j.biotechadv.2020.107581 Mulinari, J., J. V. Oliveira, and D. Hotza (2020) Lipase immobilization on ceramic supports: An overview on techniques and materials. Biotechnol. Adv. 42: 107581. 

  6. J. Clean. Prod. D N Rocha 275 124090 2020 10.1016/j.jclepro.2020.124090 Rocha, D. N., E. G. Barbosa, N. dos Santos Renato, E. V. V. Varejao, U. P. da Silva, M. E. V. de Araujo, and M. A. Martins (2020) Improving biofuel production by thermochemical conversion of defatted Scenedesmus obliquus biomass. J. Clean. Prod. 275: 124090. 

  7. Bioresour. Technol. M Y Roleda 129 439 2013 10.1016/j.biortech.2012.11.043 Roleda, M. Y., S. P. Slocombe, R. J. G. Leakey, J. G. Day, E. M. Bell, and M. S. Stanley (2013) Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresour. Technol. 129: 439-449. 

  8. Aquaculture. S M Renaud 211 195 2002 10.1016/S0044-8486(01)00875-4 Renaud, S. M., L. V. Thinh, G. Lambrinidis, and D. L. Parry (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture. 211: 195-214. 

  9. React. Funct. Polym. H A Afzal 147 104454 2020 10.1016/j.reactfunctpolym.2019.104454 Afzal, H. A., R. V. Ghorpade, A. K. Thorve, S. Nagaraja, B. E. Al-Dhubiab, G. Meravanige, S. T. Rasool, and T. S. Roopashree (2020) Epoxy functionalized polymer grafted magnetic nanoparticles by facile surface initiated polymerization for immobilization studies of Candida Antarctica lipase B. React. Funct. Polym. 147: 104454. 

  10. Appl. Biochem. Biotechnol. J F Zhao 188 677 2019 10.1007/s12010-018-02947-2 Zhao, J. F., J. P. Lin, L. R. Yang, and M. B. Wu (2019) Enhanced performance of Rhizopus oryzae lipase by reasonable immobilization on magnetic nanoparticles and its application in synthesis 1,3-diacyglycerol. Appl. Biochem. Biotechnol. 188: 677-689. 

  11. Biotechnol. Bioprocess Eng. S W Kim 21 743 2016 10.1007/s12257-016-0176-7 Kim, S. W., M. Xiao, and H. J. Shin (2016) Fractionation and lipase-catalyzed conversion of microalgal lipids to biodiesel. Biotechnol. Bioprocess Eng. 21:743-750. 

  12. Mater. Sci. Eng. C Mater. Biol. Appl. S Asmata 112 110883 2020 10.1016/j.msec.2020.110883 Asmata, S., Q. Husain, M. Shoebb, and M. Mobin (2020) Tailoring a robust nanozyme formulation based on surfactant stabilized lipase immobilized onto newly fabricated magnetic silica anchored graphene nanocomposite: Aggrandized stability and application. Mater. Sci. Eng. C Mater. Biol. Appl. 112: 110883. 

  13. Biotechnol. Bioprocess Eng. Y Li 20 965 2015 10.1007/s12257-015-0250-6 Li, Y., Y. Huang, W. Du, L. Dai, and D. Liu (2015) Combined phospholipase and lipase catalysis for biodiesel production from phospholipids-containing oil. Biotechnol. Bioprocess Eng. 20: 965-970. 

  14. Biotechnol. Bioprocess Eng. L Ren 18 888 2013 10.1007/s12257-013-0044-7 Ren, L., H. Jia, M. Yu, W. Shen, H. Zhou, and P. Wei (2013) Enhanced catalytic ability of Candida rugosa lipase immobilized on pore-enlarged hollow silica microspheres and cross-linked by modified dextran in both aqueous and non-aqueous phases. Biotechnol. Bioprocess Eng. 18: 888-896. 

  15. Asia-Pac. J. Chem. Eng. A Ghosh 12 745 2017 10.1002/apj.2114 Ghosh, A., S. Khanra, M. Mondal, T. I. Devi, G. Halder, O. N. Tiwari, T. K. Bhowmick, and K. Gayen (2017) Biochemical characterization of microalgae collected from north east region of India advancing towards the algae-based commercial production. Asia-Pac. J. Chem. Eng. 12: 745-754. 

  16. Environ. Prog. Sustainable Energy. A Ghosh 39 e13378 2020 10.1002/ep.13378 Ghosh, A., S. Sarkar, K. Gayen, and T. K. Bhowmick (2020) Effects of carbon, nitrogen, and phosphorus supplements on growth and biochemical composition of Podohedriella sp. (MCC44) isolated from northeast India. Environ. Prog. Sustainable Energy. 39: e13378. 

  17. J. Taiwan Inst. Chem. Eng. W Cheng 104 351 2019 10.1016/j.jtice.2019.09.013 Cheng, W., Y. Li, X. Li, W. Bai, and Y. Liang (2019) Preparation and characterization of PDA/SiO2 nanofilm constructed macroporous monolith and its application in lipase immobilization. J. Taiwan Inst. Chem. Eng. 104: 351-359. 

  18. React. Funct. Polym. H Tokuyama 126 83 2018 10.1016/j.reactfunctpolym.2018.03.008 Tokuyama, H., A. Naito, and G. Kato (2018) Transesterification of triolein with ethanol using lipase-entrapped NIPA-eo-PEGMEA gel beads. React. Funct. Polym. 126: 83-86. 

  19. Process Biochem. G Bayramoglu 46 372 2011 10.1016/j.procbio.2010.09.014 Bayramoglu, G., B. Hazer, B. Altintas, and M. Y. Arica (2011) Covalent immobilization of lipase onto amine functionalized polypropylene membrane and its application in green apple flavor (ethyl valerate) synthesis. Process Biochem. 46: 372-378. 

  20. Bioresour. Technol. A Badoei-Dalfard 278 473 2019 10.1016/j.biortech.2019.01.050 Badoei-Dalfard, A., Z. Karami, and S. Malekabadi (2019) Construction of CLEAs-lipase on magnetic graphene oxide nanocomposite: An efficient nanobiocatalyst for biodiesel production. Bioresour. Technol. 278: 473-476. 

  21. J. Clean. Prod. R Jambulingam 215 245 2019 10.1016/j.jclepro.2018.12.146 Jambulingam, R., M. Shalma, and V. Shankar (2019) Biodiesel production using lipase immobilised functionalized magnetic nanocatalyst from oleaginous fungal lipid. J. Clean. Prod. 215: 245-258. 

  22. Appl. Surf. Sci. M Sarno 474 135 2019 10.1016/j.apsusc.2018.04.060 Sarno, M. and M. Iuliano (2019) Highly active and stable Fe3O4/Au nanoparticles supporting lipase catalyst for biodiesel production from waste tomato. Appl. Surf. Sci. 474: 135-146. 

  23. Res. Chem. Intermed. X H Yan 44 4295 2018 10.1007/s11164-018-3369-1 Yan, X. H. and P. Xue (2018) Tailoring magnetic mesoporous silica spheres-immobilized lipase for kinetic resolution of methyl 2-bromopropionate in a co-solvent system. Res. Chem. Intermed. 44: 4295-4306. 

  24. Methods Enzymol. V C Ozalp 630 111 2020 10.1016/bs.mie.2019.09.004 Ozalp, V. C., G. Bayramoglu, and M. Y. Arica (2020) Fibrous polymer functionalized magnetic biocatalysts for improved performance. Methods Enzymol. 630: 111-132. 

  25. Biotechnol. Bioprocess Eng. K W Lee 15 603 2010 10.1007/s12257-009-3085-1 Lee, K. W., K. Min, K. Park, and Y. J. Yoo (2010) Development of an amphiphilic Matrix for immobilization of Candida antartica lipase B for biodiesel production. Biotechnol. Bioprocess Eng. 15: 603-607. 

  26. Coord. Chem. Rev. J Cui 352 249 2017 10.1016/j.ccr.2017.09.008 Cui, J. and S. Jia (2017) Organic-inorganic hybrid nanoflowers: a novel host platform for immobilizing biomolecules. Coord. Chem. Rev. 352: 249-263. 

  27. Catal. Sci. Technol. X Wu 5 5077 2015 10.1039/C5CY01181G Wu, X., M. Hou, and J. Ge (2015) Metal-organic frameworks and inorganic nanoflowers: a type of emerging inorganic crystal nanocarrier for enzyme immobilization. Catal. Sci. Technol. 5: 5077-5085. 

  28. Chem. Eng. J. S Ren 373 1254 2019 10.1016/j.cej.2019.05.141 Ren, S., C. Li, X. Jiao, S. Jia, Y. Jiang, M. Bilal, and J. Cui (2019) Recent progress in multienzymes co-immobilization and multienzyme system applications. Chem. Eng. J. 373: 1254-1278. 

  29. Int. J. Biol. Macromol. M Bilal 119 278 2018 10.1016/j.ijbiomac.2018.07.134 Bilal, M., T. Rasheed, Y. Zhao, H. M. N. Iqbal, and J. Cui (2018) “Smart” chemistry and its application in peroxidase immobilization using different support materials. Int. J. Biol. Macromol. 119: 278-290. 

  30. Appl. Biochem. Biotechnol. G Bayramoglu 190 1224 2020 10.1007/s12010-019-03158-z Bayramoglu, G., B. Salih, and M. Y. Arica (2020) Catalytic activity of immobilized chymotrypsin on hybrid silica-magnetic biocompatible particles and its application in peptide synthesis. Appl. Biochem. Biotechnol. 190: 1224-1241. 

  31. Crit. Rev. Biotechnol. J D Cui 35 15 2015 10.3109/07388551.2013.795516 Cui, J. D. and S. R. Jia (2015) Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: current development and future challenges. Crit. Rev. Biotechnol. 35: 15-28. 

  32. Int. J. Biol. Macromol. M Bilal 130 186 2019 10.1016/j.ijbiomac.2019.02.141 Bilal, M., J. Cui, and H. M. N. Iqbal (2019) Tailoring enzyme microenvironment: state-of-the-art strategy to fulfill the quest for efficient bio-catalysis. Int. J. Biol. Macromol. 130: 186-196. 

  33. Chem. Eng. Res. Des. G Bayramoglu 95 12 2015 10.1016/j.cherd.2014.12.011 Bayramoglu, G., A. Akbulut, V. C. Ozalp, and M. Y. Arica (2015) Immobilized lipase on micro-porous biosilica for enzymatic transesterification of algal oil. Chem. Eng. Res. Des. 95: 12-21. 

  34. Int. J. Biol. Macromol. L Zhong 152 207 2020 10.1016/j.ijbiomac.2020.02.258 Zhong, L., Y. Feng, G. Wang, Z. Wang, M. Bilal, H. Lv, S. Jia, and J. Cui (2020) Production and use of immobilized lipases in/on nanomaterials: A review from the waste to biodiesel production. Int. J. Biol. Macromol. 152: 207-222. 

  35. Sci. Rep. J Cui 6 27928 2016 10.1038/srep27928 Cui, J., Y. Zhao, R. Liu, C. Zhong, and S. Jia (2016) Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Sci. Rep. 6: 27928. 

  36. J. Chem. Technol. Biotechnol. J Cui 92 1785 2017 10.1002/jctb.5179 Cui, J., T. Lin, Y. Feng, Z. Tan, and S. Jia (2017) Preparation of spherical cross-linked lipase aggregates with improved activity, stability and reusability characteristic in water-in-ionic liquid microemulsion. J. Chem. Technol. Biotechnol. 92: 1785-1793. 

  37. J. Agric. Food Chem. J Cui 64 7179 2016 10.1021/acs.jafc.6b01939 Cui, J., L. Cui, S. Jia, Z. Su, and S. Zhang (2016) Hybrid cross-linked lipase aggregates with magnetic nanoparticles: A robust and recyclable biocatalysis for the epoxidation of oleic acid. J. Agric. Food Chem. 64: 7179-7187. 

  38. Microporous Mesoporous Mater. J A S Costa 291 109698 2020 10.1016/j.micromeso.2019.109698 Costa, J. A. S., R. A. de Jesus, D. O. Santos, J. F. Mano, L. P. C. Romao, and C. M. Paranhos (2020) Recent progresses in the adsorption of organic, inorganic, and gas compounds by MCM-41-based mesoporous materials. Microporous Mesoporous Mater. 291: 109698. 

  39. Catalysts. T Zou 10 1266 2020 10.3390/catal10111266 Zou, T., Y. D. Duan, Q. Wang, and H. M. Cheng (2020) Preparation of immobilized lipase on silica clay as a potential biocatalyst on synthesis of biodiesel. Catalysts. 10: 1266. 

  40. Langmuir. F Gabriele 34 11510 2018 10.1021/acs.langmuir.8b02255 Gabriele, F., N. Spreti, T. D. Giacco, R. Germani, and M. Tiecco (2018) Effect of surfactant structure on the superactivity of Candida rugosa lipase. Langmuir. 34: 11510-11517. 

  41. Chem. Eng. Res. Des. J P Miguez 139 296 2018 10.1016/j.cherd.2018.09.037 Miguez, J. P., R. S. GamaIara, I. C. A. Bolina, C. C. de Melo, M. R. Cordeiro, D. B. Hirata, and A. A. Mendes (2018) Enzymatic synthesis optimization of a cosmetic ester catalyzed by a homemade biocatalyst prepared via physical adsorption of lipase on amino-functionalized rice husk silica. Chem. Eng. Res. Des. 139: 296-308. 

  42. Chem. Eng. Res. Des. T A Arica 141 317 2019 10.1016/j.cherd.2018.11.003 Arica, T. A., M. Kuman, O. Gercel, and E. Ayas (2019) Poly(dopamine) grafted bio-silica composite with tetraethylene-pentamine ligands for enhanced adsorption of pollutants. Chem. Eng. Res. Des. 141: 317-327. 

  43. Bioprocess Biosyst. Eng. G Bayramoglu 34 735 2011 10.1007/s00449-011-0523-1 Bayramoglu, G., B. Karagoz, B. Altintas, M. Y. Arica, and N. Bicak (2011) Poly(styrene-divinylbenzene) beads surface functionalized with di-block polymer grafting and multi-modal ligand attachment: performance of reversibly immobilized lipase in ester synthesis. Bioprocess Biosyst. Eng. 34: 735-746. 

  44. Science. H Lee 318 426 2007 10.1126/science.1147241 Lee, H., S. M. Dellatore, W. M. Miller, and P. B. Messersmith (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science. 318: 426-430. 

  45. Colloids Surf. B Biointerfaces. I Siddiqui 173 733 2019 10.1016/j.colsurfb.2018.10.021 Siddiqui, I. and Q. Husain (2019) Stabilization of polydopamine modified silver nanoparticles bound trypsin: Insights on protein hydrolysis. Colloids Surf. B Biointerfaces. 173: 733-741. 

  46. R A Andersen 83 2005 Algal Culturing Techniques Andersen, R. A. and M. Kawachi (2005) Traditional microalgae isolation techniques. pp. 83-100. In: R. A. Andersen (ed.). Algal Culturing Techniques. Elsevier Press, London, UK. 

  47. Biotechnol. Bioprocess Eng. J Johnson 22 450 2017 10.1007/s12257-017-0113-4 Johnson, J., P. D. V. N. Sudheer, Y. H. Yang, Y. G. Kim, and K. Y. Choi (2017) Hydrolytic activities of hydrolase enzymes from halophilic microorganisms. Biotechnol. Bioprocess Eng. 22: 450-461. 

  48. Anal. Biochem. M M Bradford 72 248 1976 10.1016/0003-2697(76)90527-3 Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. 

  49. Energies. A Juneja 6 4607 2013 10.3390/en6094607 Juneja, A., R. M. Ceballos, and G. S. Murthy (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies. 6: 4607-4638. 

  50. AMB Express. H D Smith-Badorf 3 9 2013 10.1186/2191-0855-3-9 Smith-Badorf, H. D., C. J. Chuck, K. R. Mokebo, H. MacDonald, M. G. Davidson, and R. J. Scott (2013) Biopro-specting the thermal waters of the Roman baths: isolation of oleaginous species and analysis of the FAME profile for biodiesel production. AMB Express. 3: 9. 

  51. Int. J. Biol. Macromol. S Asmat 140 484 2019 10.1016/j.ijbiomac.2019.08.086 Asmat, S., A. H. Anwer, and Q. Husain (2019) Immobilization of lipase onto novel constructed polydopamine grafted multiwalled carbon nanotube impregnated with magnetic cobalt and its application in synthesis of fruit flavours. Int. J. Biol. Macromol. 140: 484-495. 

  52. J. Supercrit. Fluids. O N Ciftci 75 172 2013 10.1016/j.supflu.2012.12.029 Ciftci O. N. and F. Temelli (2013) Enzymatic conversion of corn oil into biodiesel in a batch supercritical carbon dioxide reactor and kinetic modeling. J. Supercrit. Fluids. 75: 172-180. 

  53. Renew. Energy. G Abhishek 85 1002 2016 10.1016/j.renene.2015.07.059 Abhishek, G., P. Singh, S. Kumari, I. Rawat, K. Permaul, and F. Bux (2016) Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst. Renew. Energy. 85: 1002-1010. 

  54. Heliyon. A Arumugam 3 e00486 2017 10.1016/j.heliyon.2017.e00486 Arumugam, A. and V. Ponnusami (2017) Production of biodiesel by enzymatic transesterification of waste sardine oil and evaluation of its engine performance. Heliyon. 3: e00486. 

  55. Biotechnol. Biofuels. K Kawakami 4 42 2011 10.1186/1754-6834-4-42 Kawakami, K., Y. Oda, and R. Takahashi (2011) Application of a Burkholderia cepacia lipase-immobilized silica monolith to batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil. Biotechnol. Biofuels. 4: 42. 

  56. Fuel. D C Cubides-Roman 196 481 2017 10.1016/j.fuel.2017.02.014 Cubides-Roman, D. C., H. V. Pérez, H. F. de Castro, C. E. Orrego, O. H. Giraldo, E. G. Silveira, and G. F. David (2017) Ethyl esters (biodiesel) production by Pseudomonas fluorescens lipase immobilized on chitosan with magnetic properties in a bioreactor assisted by electromagnetic field. Fuel. 196: 481-487. 

  57. Bioresour. Technol. Y Wanga 172 143 2014 10.1016/j.biortech.2014.09.003 Wanga, Y., J. Liu, H. Gerken, C. Zhang, Q. Hu, and Y. Li (2014) Highly-efficient enzymatic conversion of crude algal oils into biodiesel. Bioresour. Technol. 172: 143-149. 

  58. Biochem. Eng. J. M Kalantari 79 267 2013 10.1016/j.bej.2013.09.001 Kalantari, M., M. Kazemeini, and A. Arpanaei (2013) Evaluation of biodiesel production using lipase immobilized on magnetic silica nanocomposite particles of various structures. Biochem. Eng. J. 79: 267-273. 

  59. Fuel. X Li 92 89 2012 10.1016/j.fuel.2011.06.048 Li, X., X. Y. He, Z. L. Li, Y. D. Wang, C. Y. Wang, H. Shi, and F. Wang (2012) Enzymatic production of biodiesel from Pistacia chinensis bge seed oil using immobilized lipase. Fuel. 92: 89-93. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로