$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Metabolic Analysis of Schizochytrium Mutants With High DHA Content Achieved With ARTP Mutagenesis Combined With Iodoacetic Acid and Dehydroepiandrosterone Screening 원문보기

Frontiers in bioengineering and biotechnology, v.9, 2021년, pp.738052 -   

Zeng, Lei (Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin , China) ,  Bi, Yanqi (Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin , China) ,  Guo, Pengfei (Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin , China) ,  Bi, Yali (Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin , China) ,  Wang, Tiantian (Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin , China) ,  Dong, Liang (Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin , China) ,  Wang, Fangzhong (Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin , China) ,  Chen, Lei ,  Zhang, Weiwen

Abstract AI-Helper 아이콘AI-Helper

High DHA production cost caused by low DHA titer and productivity of the current Schizochytrium strains is a bottleneck for its application in competition with traditional fish-oil based approach. In this study, atmospheric and room-temperature plasma with iodoacetic acid and dehydroepiandrosterone ...

Keyword

참고문헌 (64)

  1. Babicki S. Arndt D. Marcu A. Liang Y. Grant J. R. Maciejewski A. ( 2016 ). Heatmapper: Web-Enabled Heat Mapping for All . Nucleic Acids Res. 44 ( W1 ), W147 ? W153 . 10.1093/nar/gkw419 27190236 

  2. Beevers H. ( 1952 ). Malonic Acid as an Inhibitor of maize Root Respiration . Plant Physiol. 27 ( 4 ), 725 ? 735 . 10.1104/pp.27.4.725 16654497 

  3. Bhat S. A. Iqbal I. K. Kumar A. ( 2016 ). Imaging the NADH:NAD+ Homeostasis for Understanding the Metabolic Response of Mycobacterium to Physiologically Relevant Stresses . Front. Cel. Infect. Microbiol. 6 , 145 . 10.3389/fcimb.2016.00145 

  4. Cao S. Zhou X. Jin W. Wang F. Tu R. Han S. ( 2017 ). Improving of Lipid Productivity of the Oleaginous Microalgae Chlorella Pyrenoidosa via Atmospheric and Room Temperature Plasma (ARTP) . Bioresour. Technol. 244 , 1400 ? 1406 . 10.1016/j.biortech.2017.05.039 28539241 

  5. Chance B. Park J. H. ( 1967 ). The Properties and Enzymatic Significance of the Enzyme-Diphosphopyridine Nucleotide Compound of 3-phosphoglyceraldehyde Dehydrogenase . J. Biol. Chem. 242 ( 21 ), 5093 ? 5105 . 10.1016/s0021-9258(18)99480-9 4293782 

  6. Chang G. Gao N. Tian G. Wu Q. Chang M. Wang X. ( 2013 ). Improvement of Docosahexaenoic Acid Production on Glycerol by Schizochytrium Sp. S31 with Constantly High Oxygen Transfer Coefficient . Bioresour. Technol. 142 , 400 ? 406 . 10.1016/j.biortech.2013.04.107 23747449 

  7. Chen H. Zheng Y. Zhan J. He C. Wang Q. ( 2017 ). Comparative Metabolic Profiling of the Lipid-Producing green Microalga Chlorella Reveals that Nitrogen and Carbon Metabolic Pathways Contribute to Lipid Metabolism . Biotechnol. Biofuels 10 ( 1 ), 1 ? 20 . 10.1186/s13068-017-0839-4 28053662 

  8. Cheng R. Ma R. Li K. Rong H. Lin X. Wang Z. ( 2012 ). Agrobacterium Tumefaciens Mediated Transformation of marine Microalgae Schizochytrium . Microbiol. Res. 167 ( 3 ), 179 ? 186 . 10.1016/j.micres.2011.05.003 21641193 

  9. Cui G.-Z. Ma Z. Liu Y.-J. Feng Y. Sun Z. Cheng Y. ( 2016 ). Overexpression of Glucose-6-Phosphate Dehydrogenase Enhanced the Polyunsaturated Fatty Acid Composition of Aurantiochytrium Sp. SD116 . Algal Res. 19 , 138 ? 145 . 10.1016/j.algal.2016.08.005 

  10. De Swaaf M. E. De Rijk T. C. Eggink G. Sijtsma L. ( 1999 ). Optimisation of Docosahexaenoic Acid Production in Batch Cultivations by Crypthecodinium Cohnii . J. Biotechnol. 70 , 185 ? 192 . 10.1016/s0168-1656(99)00071-1 

  11. Dessi M. Noce A. Bertucci P. Manca di Villahermosa S. Zenobi R. Castagnola V. ( 2013 ). Atherosclerosis, Dyslipidemia, and Inflammation: the Significant Role of Polyunsaturated Fatty Acids . ISRN Inflamm. 2013 , 1 ? 13 . 10.1155/2013/191823 

  12. Diao J. Song X. Cui J. Liu L. Shi M. Wang F. ( 2019 ). Rewiring Metabolic Network by Chemical Modulator Based Laboratory Evolution Doubles Lipid Production in Crypthecodinium Cohnii . Metab. Eng. 51 , 88 ? 98 . 10.1016/j.ymben.2018.10.004 30393203 

  13. Ganuza E. Anderson A. J. Ratledge C. ( 2008 ). High-cell-density Cultivation of Schizochytrium Sp. In an ammonium/pH-Auxostat Fed-Batch System . Biotechnol. Lett. 30 ( 9 ), 1559 ? 1564 . 10.1007/s10529-008-9723-4 18414793 

  14. Gil A. Siegel D. Permentier H. Reijngoud D.-J. Dekker F. Bischoff R. ( 2015 ). Stability of Energy Metabolites-An Often Overlooked Issue in Metabolomics Studies: A Review . Electrophoresis 36 ( 18 ), 2156 ? 2169 . 10.1002/elps.201500031 25959207 

  15. Hoang L. A. T. Nguyen H. C. Le T. T. Hoang T. H. Q. Pham V. N. Hoang M. H. T. ( 2018 ). Different Fermentation Strategies by Schizochytrium Mangrovei Strain Pq6 to Produce Feedstock for Exploitation of Squalene and omega-3 Fatty Acids . J. Phycol. 54 ( 4 ), 550 ? 556 . 10.1111/jpy.12757 29889307 

  16. Hou J. Lages N. F. Oldiges M. Vemuri G. N. ( 2009 ). Metabolic Impact of Redox Cofactor Perturbations in Saccharomyces cerevisiae . Metab. Eng. 11 ( 4-5 ), 253 ? 261 . 10.1016/j.ymben.2009.05.001 19446033 

  17. Ivanisevic J. Benton H. P. Rinehart D. Epstein A. Kurczy M. E. Boska M. D. ( 2015 ). An Interactive Cluster Heat Map to Visualize and Explore Multidimensional Metabolomic Data . Metabolomics 11 ( 4 ), 1029 ? 1034 . 10.1007/s11306-014-0759-2 26195918 

  18. Langdon R. G. ( 1966 ). [24] Glucose 6-phosphate Dehydrogenase from Erythrocytes . Methods Enzymol. 9 , 126 ? 131 . 10.1016/0076-6879(66)09030-X 

  19. Li J. Niu X. Pei G. Sui X. Zhang X. Chen L. ( 2015 ). Identification and Metabolomic Analysis of Chemical Modulators for Lipid Accumulation in Crypthecodinium Cohnii . Bioresour. Technol. 191 , 362 ? 368 . 10.1016/j.biortech.2015.03.068 25818259 

  20. Li X. Pei G. Liu L. Chen L. Zhang W. ( 2017 ). Metabolomic Analysis and Lipid Accumulation in a Glucose Tolerant Crypthecodinium Cohnii Strain Obtained by Adaptive Laboratory Evolution . Bioresour. Technol. 235 , 87 ? 95 . 10.1016/j.biortech.2017.03.049 28365353 

  21. Li Z. Meng T. Ling X. Li J. Zheng C. Shi Y. ( 2018 ). Overexpression of Malonyl-CoA: ACP Transacylase in Schizochytrium Sp. To Improve Polyunsaturated Fatty Acid Production . J. Agric. Food Chem. 66 ( 21 ), 5382 ? 5391 . 10.1021/acs.jafc.8b01026 29722541 

  22. Li J. T. Liu X. H. He Y. D. Wang G. Y. ( 2020 ). Mutagenesis Breeding in DHA Production by Oleaginous Microorganisms . Biotechnol. Bull. 36 ( 1 ), 110 ? 115 . 10.13560/j.cnki.biotech.bull.1985.2019-0637 

  23. Lian M. Huang H. Ren L. Ji X. Zhu J. Jin L. ( 2010 ). Increase of Docosahexaenoic Acid Production by Schizochytrium Sp. Through Mutagenesis and Enzyme Assay . Appl. Biochem. Biotechnol. 162 ( 4 ), 935 ? 941 . 10.1007/s12010-009-8865-8 19967469 

  24. Ling X. Guo J. Liu X. Zhang X. Wang N. Lu Y. ( 2015 ). Impact of Carbon and Nitrogen Feeding Strategy on High Production of Biomass and Docosahexaenoic Acid (DHA) by Schizochytrium Sp. LU310 . Bioresour. Technol. 184 , 139 ? 147 . 10.1016/j.biortech.2014.09.130 25451778 

  25. Liu C. Zhang X. Rao Z.-m. Shao M.-l. Zhang L.-l. Wu D. ( 2015 ). Mutation Breeding of High 4-Androstene-3,17-Dione-Producing Mycobacterium Neoaurum ZADF-4 by Atmospheric and Room Temperature Plasma Treatment . J. Zhejiang Univ. Sci. B 16 ( 4 ), 286 ? 295 . 10.1631/jzus.B1400274 25845362 

  26. Liu J. Pei G. Diao J. Chen Z. Liu L. Chen L. ( 2017 ). Screening and Transcriptomic Analysis of Crypthecodinium Cohnii Mutants with High Growth and Lipid Content Using the Acetyl-CoA Carboxylase Inhibitor Sethoxydim . Appl. Microbiol. Biotechnol. 101 ( 15 ), 6179 ? 6191 . 10.1007/s00253-017-8397-z 28674851 

  27. Liu H. Marsafari M. Deng L. Xu P. ( 2019 ). Understanding Lipogenesis by Dynamically Profiling Transcriptional Activity of Lipogenic Promoters in Yarrowia Lipolytica . Appl. Microbiol. Biotechnol. 103 ( 7 ), 3167 ? 3179 . 10.1007/s00253-019-09664-8 30734122 

  28. Lv M. Wang F. Zeng L. Bi Y. Cui J. Liu L. ( 2020 ). Identification and Metabolomic Analysis of a Starch-Deficient Crypthecodinium Cohnii Mutant Reveals Multiple Mechanisms Relevant to Enhanced Growth and Lipid Accumulation . Algal Res. 50 , 102001 . 10.1016/j.algal.2020.102001 

  29. Makrides M. Neumann M. A. Byard R. W. Simmer K. Gibson R. A. ( 1994 ). Fatty Acid Composition of Brain, Retina, and Erythrocytes in Breast- and Formula-Fed Infants . Am. J. Clin. Nutr. 60 ( 2 ), 189 ? 194 . 10.1093/ajcn/60.2.189 7913291 

  30. Metz J. G. Roessler P. Facciotti D. Levering C. Dittrich F. Lassner M. ( 2001 ). Production of Polyunsaturated Fatty Acids by Polyketide Synthases in Both Prokaryotes and Eukaryotes . Science 293 ( 5528 ), 290 ? 293 . 10.1126/science.1059593 11452122 

  31. Nouroozi R. V. Noroozi M. V. Ahmadizadeh M. ( 2015 ). Determination of Protein Concentration Using Bradford Microplate Protein Quantification Assay . Int. Electron. J. Med. 4 ( 1 ), 11 ? 17 . 10.31661/iejm158 

  32. Ottenheim C. Nawrath M. Wu J. C. ( 2018 ). Microbial Mutagenesis by Atmospheric and Room-Temperature Plasma (ARTP): the Latest Development . Bioresour. Bioproc. 5 ( 1 ), 1 ? 14 . 10.1186/s40643-018-0200-1 

  33. Park C.-H. Park C.-H. Lee Y.-J. Lee S.-Y. Oh H.-B. Lee J.-W. ( 2011 ). Determination of the Intracellular Concentrations of Metabolites in Escherichia coli Collected during the Exponential and Stationary Growth Phases Using Liquid Chromatography-Mass Spectrometry . Bull. Korean Chem. Soc. 32 ( 2 ), 524 ? 530 . 10.5012/bkcs.2011.32.2.524 

  34. Qiao K. Wasylenko T. M. Zhou K. Xu P. Stephanopoulos G. ( 2017 ). Lipid Production in Yarrowia Lipolytica Is Maximized by Engineering Cytosolic Redox Metabolism . Nat. Biotechnol. 35 ( 2 ), 173 ? 177 . 10.1038/nbt.3763 28092657 

  35. Qiu X. Xie X. Meesapyodsuk D. ( 2020 ). Molecular Mechanisms for Biosynthesis and Assembly of Nutritionally Important Very Long Chain Polyunsaturated Fatty Acids in Microorganisms . Prog. Lipid Res. 79 , 101047 . 10.1016/j.plipres.2020.101047 32540152 

  36. Qu L. Ren L.-J. Sun G.-N. Ji X.-J. Nie Z.-K. Huang H. ( 2013a ). Batch, Fed-Batch and Repeated Fed-Batch Fermentation Processes of the marine Thraustochytrid Schizochytrium Sp. For Producing Docosahexaenoic Acid . Bioproc. Biosyst Eng. 36 ( 12 ), 1905 ? 1912 . 10.1007/s00449-013-0966-7 

  37. Qu L. Ren L.-J. Li J. Sun G.-N. Sun L.-N. Ji X.-J. ( 2013b ). Biomass Composition, Lipid Characterization, and Metabolic Profile Analysis of the Fed-Batch Fermentation Process of Two Different Docosahexanoic Acid Producing Schizochytrium Sp. Strains . Appl. Biochem. Biotechnol. 171 ( 7 ), 1865 ? 1876 . 10.1007/s12010-013-0456-z 24061873 

  38. Ren L.-J. Ji X.-J. Huang H. Qu L. Feng Y. Tong Q.-Q. ( 2010 ). Development of a Stepwise Aeration Control Strategy for Efficient Docosahexaenoic Acid Production by Schizochytrium Sp . Appl. Microbiol. Biotechnol. 87 ( 5 ), 1649 ? 1656 . 10.1007/s00253-010-2639-7 20445973 

  39. Ren L.-j. Zhuang X.-y. Chen S.-l. Ji X.-j. Huang H. ( 2015 ). Introduction of ω-3 Desaturase Obviously Changed the Fatty Acid Profile and Sterol Content of Schizochytrium Sp . J. Agric. Food Chem. 63 ( 44 ), 9770 ? 9776 . 10.1021/acs.jafc.5b04238 26494394 

  40. Reveillon D. Tunin-Ley A. Grondin I. Othmani A. Zubia M. Bunet R. ( 2019 ). Exploring the Chemodiversity of Tropical Microalgae for the Discovery of Natural Antifouling Compounds . J. Appl. Phycol. 31 ( 1 ), 319 ? 333 . 10.1007/s10811-018-1594-z 

  41. Silverman A. M. Qiao K. Xu P. Stephanopoulos G. ( 2016 ). Functional Overexpression and Characterization of Lipogenesis-Related Genes in the Oleaginous Yeast Yarrowia Lipolytica . Appl. Microbiol. Biotechnol. 100 ( 8 ), 3781 ? 3798 . 10.1007/s00253-016-7376-0 26915993 

  42. Su Y. Wang J. Shi M. Niu X. Yu X. Gao L. ( 2014 ). Metabolomic and Network Analysis of Astaxanthin-Producing Haematococcus pluvialis under Various Stress Conditions . Bioresour. Technol. 170 , 522 ? 529 . 10.1016/j.biortech.2014.08.018 25164345 

  43. Sun H. Chen H. Zang X. Hou P. Zhou B. Liu Y. ( 2015 ). Application of the Cre/loxP Site-specific Recombination System for Gene Transformation in Aurantiochytrium Limacinum . Molecules 20 ( 6 ), 10110 ? 10121 . 10.3390/molecules200610110 26039334 

  44. Sun X.-M. Ren L.-J. Ji X.-J. Chen S.-L. Guo D.-S. Huang H. ( 2016 ). Adaptive Evolution of Schizochytrium Sp. By Continuous High Oxygen Stimulations to Enhance Docosahexaenoic Acid Synthesis . Bioresour. Technol. 211 , 374 ? 381 . 10.1016/j.biortech.2016.03.093 27030957 

  45. Sun X.-M. Ren L.-J. Bi Z.-Q. Ji X.-J. Zhao Q.-Y. Huang H. ( 2018 ). Adaptive Evolution of Microalgae Schizochytrium Sp. Under High Salinity Stress to Alleviate Oxidative Damage and Improve Lipid Biosynthesis . Bioresour. Technol. 267 , 438 ? 444 . 10.1016/j.biortech.2018.07.079 30032058 

  46. Sun H. Li X. Ren Y. Zhang H. Mao X. Lao Y. ( 2020 ). Boost Carbon Availability and Value in Algal Cell for Economic Deployment of Biomass . Bioresour. Technol. 300 , 122640 . 10.1016/j.biortech.2019.122640 31887581 

  47. Tian W.-N. Braunstein L. D. Apse K. Pang J. Rose M. Tian X. ( 1999 ). Importance of Glucose-6-Phosphate Dehydrogenase Activity in Cell Death . Am. J. Physiology-Cell Physiol. 276 ( 5 ), C1121 ? C1131 . 10.1152/ajpcell.1999.276.5.c1121 

  48. Valledor L. Furuhashi T. Hanak A.-M. Weckwerth W. ( 2013 ). Systemic Cold Stress Adaptation of Chlamydomonas Reinhardtii . Mol. Cell Proteomics 12 ( 8 ), 2032 ? 2047 . 10.1074/mcp.m112.026765 23564937 

  49. Vemuri G. N. Eiteman M. A. McEwen J. E. Olsson L. Nielsen J. ( 2007 ). Increasing NADH Oxidation Reduces Overflow Metabolism in Saccharomyces cerevisiae . Proc. Natl. Acad. Sci. 104 ( 7 ), 2402 ? 2407 . 10.1073/pnas.0607469104 17287356 

  50. Veyel D. Erban A. Fehrle I. Kopka J. Schroda M. ( 2014 ). Rationales and Approaches for Studying Metabolism in Eukaryotic Microalgae . Metabolites 4 ( 2 ), 184 ? 217 . 10.3390/metabo4020184 24957022 

  51. Wang X. Lu M. Wang S. Fang Y. Wang D. Ren W. ( 2014 ). The Atmospheric and Room-Temperature Plasma (ARTP) Method on the Dextranase Activity and Structure . Int. J. Biol. Macromol. 70 , 284 ? 291 . 10.1016/j.ijbiomac.2014.07.006 25020081 

  52. Wang F. Bi Y. Diao J. Lv M. Cui J. Chen L. ( 2019 ). Metabolic Engineering to Enhance Biosynthesis of Both Docosahexaenoic Acid and Odd-Chain Fatty Acids in Schizochytrium Sp. S31 . Biotechnol. Biofuels 12 , 141 . 10.1186/s13068-019-1484-x 31182976 

  53. Willette S. Gill S. S. Dungan B. Schaub T. M. Jarvis J. M. St. Hilaire R. ( 2018 ). Alterations in Lipidome and Metabolome Profiles of Nannochloropsis salina in Response to Reduced Culture Temperature during Sinusoidal Temperature and Light . Algal Res. 32 , 79 ? 92 . 10.1016/j.algal.2018.03.001 

  54. Xu Y. Zang X. N. Xu D. Zhnag X. C. ( 2012 ). Mutation of Schizochytrium Limacinum and Screening of Elite Mutants . Periodical Ocean Univ. China 42 ( 12 ), 054 ? 058 . 10.16441/j.cnki.hdxb.2012.12.008 

  55. Xu P. Qiao K. Stephanopoulos G. ( 2017 ). Engineering Oxidative Stress Defense Pathways to Build a Robust Lipid Production Platform in Yarrowia Lipolytica . Biotechnol. Bioeng. 114 ( 7 ), 1521 ? 1530 . 10.1002/bit.26285 28295166 

  56. Xue J. Balamurugan S. Li D.-W. Liu Y.-H. Zeng H. Wang L. ( 2017 ). Glucose-6-phosphate Dehydrogenase as a Target for Highly Efficient Fatty Acid Biosynthesis in Microalgae by Enhancing NADPH Supply . Metab. Eng. 41 , 212 ? 221 . 10.1016/j.ymben.2017.04.008 28465173 

  57. Xue J. Chen T.-T. Zheng J.-W. Balamurugan S. Cai J.-X. Liu Y.-H. ( 2018 ). The Role of Diatom Glucose-6-Phosphate Dehydrogenase on Lipogenic NADPH Supply in green Microalgae through Plastidial Oxidative Pentose Phosphate Pathway . Appl. Microbiol. Biotechnol. 102 ( 24 ), 10803 ? 10815 . 10.1007/s00253-018-9415-5 30349933 

  58. Yin F.-W. Zhu S.-Y. Guo D.-S. Ren L.-J. Ji X.-J. Huang H. ( 2019 ). Development of a Strategy for the Production of Docosahexaenoic Acid by Schizochytrium Sp. From Cane Molasses and Algae-Residue . Bioresour. Technol. 271 , 118 ? 124 . 10.1016/j.biortech.2018.09.114 30265951 

  59. Yu T. Zhou Y. J. Huang M. Liu Q. Pereira R. David F. ( 2018 ). Reprogramming Yeast Metabolism from Alcoholic Fermentation to Lipogenesis . Cell 174 ( 6 ), 1549 ? 1558 . 10.1016/j.cell.2018.07.013 30100189 

  60. Yuan J. Zhao B. Sun M. Wang W. Yang H. ( 2015 ). Rapid Mutation Breeding Schizochytrium Strains Producing High-Yield Docosahexenoic Acid by Atmospheric and Room Temperature Plasmas (ARTP) . Biotechnol. Bull. 31 ( 10 ), 199 ? 204 . 10.13560/j.cnki.biotech.bull.1985.2015.10.030 

  61. Zhao B. Li Y. Mbifile M. D. Li C. Yang H. Wang W. ( 2017 ). Improvement of Docosahexaenoic Acid Fermentation from Schizochytrium Sp. AB-610 by Staged pH Control Based on Cell Morphological Changes . Eng. Life Sci. 17 ( 9 ), 981 ? 988 . 10.1002/elsc.201600249 32624848 

  62. Zhao B. Li Y. Li C. Yang H. Wang W. ( 2018 ). Enhancement of Schizochytrium DHA Synthesis by Plasma Mutagenesis Aided with Malonic Acid and Zeocin Screening . Appl. Microbiol. Biotechnol. 102 ( 5 ), 2351 ? 2361 . 10.1007/s00253-018-8756-4 29356868 

  63. Zhou B. Xiao J. F. Tuli L. Ressom H. W. ( 2012 ). LC-MS-based Metabolomics . Mol. Biosyst. 8 ( 2 ), 470 ? 481 . 10.1039/c1mb05350g 22041788 

  64. Zwickl P. Fabry S. Bogedain C. Haas A. Hensel R. ( 1990 ). Glyceraldehyde-3-phosphate Dehydrogenase from the Hyperthermophilic Archaebacterium Pyrococcus Woesei : Characterization of the Enzyme, Cloning and Sequencing of the Gene, and Expression in Escherichia coli . J. Bacteriol. 172 ( 8 ), 4329 ? 4338 . 10.1128/jb.172.8.4329-4338.1990 2165475 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로