최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Frontiers in bioengineering and biotechnology, v.9, 2021년, pp.738052 -
Zeng, Lei (Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin , China) , Bi, Yanqi (Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin , China) , Guo, Pengfei (Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin , China) , Bi, Yali (Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin , China) , Wang, Tiantian (Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin , China) , Dong, Liang (Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin , China) , Wang, Fangzhong (Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin , China) , Chen, Lei , Zhang, Weiwen
High DHA production cost caused by low DHA titer and productivity of the current Schizochytrium strains is a bottleneck for its application in competition with traditional fish-oil based approach. In this study, atmospheric and room-temperature plasma with iodoacetic acid and dehydroepiandrosterone ...
Babicki S. Arndt D. Marcu A. Liang Y. Grant J. R. Maciejewski A. ( 2016 ). Heatmapper: Web-Enabled Heat Mapping for All . Nucleic Acids Res. 44 ( W1 ), W147 ? W153 . 10.1093/nar/gkw419 27190236
Beevers H. ( 1952 ). Malonic Acid as an Inhibitor of maize Root Respiration . Plant Physiol. 27 ( 4 ), 725 ? 735 . 10.1104/pp.27.4.725 16654497
Bhat S. A. Iqbal I. K. Kumar A. ( 2016 ). Imaging the NADH:NAD+ Homeostasis for Understanding the Metabolic Response of Mycobacterium to Physiologically Relevant Stresses . Front. Cel. Infect. Microbiol. 6 , 145 . 10.3389/fcimb.2016.00145
Cao S. Zhou X. Jin W. Wang F. Tu R. Han S. ( 2017 ). Improving of Lipid Productivity of the Oleaginous Microalgae Chlorella Pyrenoidosa via Atmospheric and Room Temperature Plasma (ARTP) . Bioresour. Technol. 244 , 1400 ? 1406 . 10.1016/j.biortech.2017.05.039 28539241
Chance B. Park J. H. ( 1967 ). The Properties and Enzymatic Significance of the Enzyme-Diphosphopyridine Nucleotide Compound of 3-phosphoglyceraldehyde Dehydrogenase . J. Biol. Chem. 242 ( 21 ), 5093 ? 5105 . 10.1016/s0021-9258(18)99480-9 4293782
Chang G. Gao N. Tian G. Wu Q. Chang M. Wang X. ( 2013 ). Improvement of Docosahexaenoic Acid Production on Glycerol by Schizochytrium Sp. S31 with Constantly High Oxygen Transfer Coefficient . Bioresour. Technol. 142 , 400 ? 406 . 10.1016/j.biortech.2013.04.107 23747449
Chen H. Zheng Y. Zhan J. He C. Wang Q. ( 2017 ). Comparative Metabolic Profiling of the Lipid-Producing green Microalga Chlorella Reveals that Nitrogen and Carbon Metabolic Pathways Contribute to Lipid Metabolism . Biotechnol. Biofuels 10 ( 1 ), 1 ? 20 . 10.1186/s13068-017-0839-4 28053662
Cheng R. Ma R. Li K. Rong H. Lin X. Wang Z. ( 2012 ). Agrobacterium Tumefaciens Mediated Transformation of marine Microalgae Schizochytrium . Microbiol. Res. 167 ( 3 ), 179 ? 186 . 10.1016/j.micres.2011.05.003 21641193
Cui G.-Z. Ma Z. Liu Y.-J. Feng Y. Sun Z. Cheng Y. ( 2016 ). Overexpression of Glucose-6-Phosphate Dehydrogenase Enhanced the Polyunsaturated Fatty Acid Composition of Aurantiochytrium Sp. SD116 . Algal Res. 19 , 138 ? 145 . 10.1016/j.algal.2016.08.005
De Swaaf M. E. De Rijk T. C. Eggink G. Sijtsma L. ( 1999 ). Optimisation of Docosahexaenoic Acid Production in Batch Cultivations by Crypthecodinium Cohnii . J. Biotechnol. 70 , 185 ? 192 . 10.1016/s0168-1656(99)00071-1
Dessi M. Noce A. Bertucci P. Manca di Villahermosa S. Zenobi R. Castagnola V. ( 2013 ). Atherosclerosis, Dyslipidemia, and Inflammation: the Significant Role of Polyunsaturated Fatty Acids . ISRN Inflamm. 2013 , 1 ? 13 . 10.1155/2013/191823
Diao J. Song X. Cui J. Liu L. Shi M. Wang F. ( 2019 ). Rewiring Metabolic Network by Chemical Modulator Based Laboratory Evolution Doubles Lipid Production in Crypthecodinium Cohnii . Metab. Eng. 51 , 88 ? 98 . 10.1016/j.ymben.2018.10.004 30393203
Ganuza E. Anderson A. J. Ratledge C. ( 2008 ). High-cell-density Cultivation of Schizochytrium Sp. In an ammonium/pH-Auxostat Fed-Batch System . Biotechnol. Lett. 30 ( 9 ), 1559 ? 1564 . 10.1007/s10529-008-9723-4 18414793
Gil A. Siegel D. Permentier H. Reijngoud D.-J. Dekker F. Bischoff R. ( 2015 ). Stability of Energy Metabolites-An Often Overlooked Issue in Metabolomics Studies: A Review . Electrophoresis 36 ( 18 ), 2156 ? 2169 . 10.1002/elps.201500031 25959207
Hoang L. A. T. Nguyen H. C. Le T. T. Hoang T. H. Q. Pham V. N. Hoang M. H. T. ( 2018 ). Different Fermentation Strategies by Schizochytrium Mangrovei Strain Pq6 to Produce Feedstock for Exploitation of Squalene and omega-3 Fatty Acids . J. Phycol. 54 ( 4 ), 550 ? 556 . 10.1111/jpy.12757 29889307
Hou J. Lages N. F. Oldiges M. Vemuri G. N. ( 2009 ). Metabolic Impact of Redox Cofactor Perturbations in Saccharomyces cerevisiae . Metab. Eng. 11 ( 4-5 ), 253 ? 261 . 10.1016/j.ymben.2009.05.001 19446033
Ivanisevic J. Benton H. P. Rinehart D. Epstein A. Kurczy M. E. Boska M. D. ( 2015 ). An Interactive Cluster Heat Map to Visualize and Explore Multidimensional Metabolomic Data . Metabolomics 11 ( 4 ), 1029 ? 1034 . 10.1007/s11306-014-0759-2 26195918
Li J. Niu X. Pei G. Sui X. Zhang X. Chen L. ( 2015 ). Identification and Metabolomic Analysis of Chemical Modulators for Lipid Accumulation in Crypthecodinium Cohnii . Bioresour. Technol. 191 , 362 ? 368 . 10.1016/j.biortech.2015.03.068 25818259
Li X. Pei G. Liu L. Chen L. Zhang W. ( 2017 ). Metabolomic Analysis and Lipid Accumulation in a Glucose Tolerant Crypthecodinium Cohnii Strain Obtained by Adaptive Laboratory Evolution . Bioresour. Technol. 235 , 87 ? 95 . 10.1016/j.biortech.2017.03.049 28365353
Li Z. Meng T. Ling X. Li J. Zheng C. Shi Y. ( 2018 ). Overexpression of Malonyl-CoA: ACP Transacylase in Schizochytrium Sp. To Improve Polyunsaturated Fatty Acid Production . J. Agric. Food Chem. 66 ( 21 ), 5382 ? 5391 . 10.1021/acs.jafc.8b01026 29722541
Lian M. Huang H. Ren L. Ji X. Zhu J. Jin L. ( 2010 ). Increase of Docosahexaenoic Acid Production by Schizochytrium Sp. Through Mutagenesis and Enzyme Assay . Appl. Biochem. Biotechnol. 162 ( 4 ), 935 ? 941 . 10.1007/s12010-009-8865-8 19967469
Ling X. Guo J. Liu X. Zhang X. Wang N. Lu Y. ( 2015 ). Impact of Carbon and Nitrogen Feeding Strategy on High Production of Biomass and Docosahexaenoic Acid (DHA) by Schizochytrium Sp. LU310 . Bioresour. Technol. 184 , 139 ? 147 . 10.1016/j.biortech.2014.09.130 25451778
Liu C. Zhang X. Rao Z.-m. Shao M.-l. Zhang L.-l. Wu D. ( 2015 ). Mutation Breeding of High 4-Androstene-3,17-Dione-Producing Mycobacterium Neoaurum ZADF-4 by Atmospheric and Room Temperature Plasma Treatment . J. Zhejiang Univ. Sci. B 16 ( 4 ), 286 ? 295 . 10.1631/jzus.B1400274 25845362
Liu J. Pei G. Diao J. Chen Z. Liu L. Chen L. ( 2017 ). Screening and Transcriptomic Analysis of Crypthecodinium Cohnii Mutants with High Growth and Lipid Content Using the Acetyl-CoA Carboxylase Inhibitor Sethoxydim . Appl. Microbiol. Biotechnol. 101 ( 15 ), 6179 ? 6191 . 10.1007/s00253-017-8397-z 28674851
Liu H. Marsafari M. Deng L. Xu P. ( 2019 ). Understanding Lipogenesis by Dynamically Profiling Transcriptional Activity of Lipogenic Promoters in Yarrowia Lipolytica . Appl. Microbiol. Biotechnol. 103 ( 7 ), 3167 ? 3179 . 10.1007/s00253-019-09664-8 30734122
Lv M. Wang F. Zeng L. Bi Y. Cui J. Liu L. ( 2020 ). Identification and Metabolomic Analysis of a Starch-Deficient Crypthecodinium Cohnii Mutant Reveals Multiple Mechanisms Relevant to Enhanced Growth and Lipid Accumulation . Algal Res. 50 , 102001 . 10.1016/j.algal.2020.102001
Makrides M. Neumann M. A. Byard R. W. Simmer K. Gibson R. A. ( 1994 ). Fatty Acid Composition of Brain, Retina, and Erythrocytes in Breast- and Formula-Fed Infants . Am. J. Clin. Nutr. 60 ( 2 ), 189 ? 194 . 10.1093/ajcn/60.2.189 7913291
Metz J. G. Roessler P. Facciotti D. Levering C. Dittrich F. Lassner M. ( 2001 ). Production of Polyunsaturated Fatty Acids by Polyketide Synthases in Both Prokaryotes and Eukaryotes . Science 293 ( 5528 ), 290 ? 293 . 10.1126/science.1059593 11452122
Ottenheim C. Nawrath M. Wu J. C. ( 2018 ). Microbial Mutagenesis by Atmospheric and Room-Temperature Plasma (ARTP): the Latest Development . Bioresour. Bioproc. 5 ( 1 ), 1 ? 14 . 10.1186/s40643-018-0200-1
Park C.-H. Park C.-H. Lee Y.-J. Lee S.-Y. Oh H.-B. Lee J.-W. ( 2011 ). Determination of the Intracellular Concentrations of Metabolites in Escherichia coli Collected during the Exponential and Stationary Growth Phases Using Liquid Chromatography-Mass Spectrometry . Bull. Korean Chem. Soc. 32 ( 2 ), 524 ? 530 . 10.5012/bkcs.2011.32.2.524
Qiao K. Wasylenko T. M. Zhou K. Xu P. Stephanopoulos G. ( 2017 ). Lipid Production in Yarrowia Lipolytica Is Maximized by Engineering Cytosolic Redox Metabolism . Nat. Biotechnol. 35 ( 2 ), 173 ? 177 . 10.1038/nbt.3763 28092657
Qiu X. Xie X. Meesapyodsuk D. ( 2020 ). Molecular Mechanisms for Biosynthesis and Assembly of Nutritionally Important Very Long Chain Polyunsaturated Fatty Acids in Microorganisms . Prog. Lipid Res. 79 , 101047 . 10.1016/j.plipres.2020.101047 32540152
Qu L. Ren L.-J. Sun G.-N. Ji X.-J. Nie Z.-K. Huang H. ( 2013a ). Batch, Fed-Batch and Repeated Fed-Batch Fermentation Processes of the marine Thraustochytrid Schizochytrium Sp. For Producing Docosahexaenoic Acid . Bioproc. Biosyst Eng. 36 ( 12 ), 1905 ? 1912 . 10.1007/s00449-013-0966-7
Qu L. Ren L.-J. Li J. Sun G.-N. Sun L.-N. Ji X.-J. ( 2013b ). Biomass Composition, Lipid Characterization, and Metabolic Profile Analysis of the Fed-Batch Fermentation Process of Two Different Docosahexanoic Acid Producing Schizochytrium Sp. Strains . Appl. Biochem. Biotechnol. 171 ( 7 ), 1865 ? 1876 . 10.1007/s12010-013-0456-z 24061873
Ren L.-J. Ji X.-J. Huang H. Qu L. Feng Y. Tong Q.-Q. ( 2010 ). Development of a Stepwise Aeration Control Strategy for Efficient Docosahexaenoic Acid Production by Schizochytrium Sp . Appl. Microbiol. Biotechnol. 87 ( 5 ), 1649 ? 1656 . 10.1007/s00253-010-2639-7 20445973
Ren L.-j. Zhuang X.-y. Chen S.-l. Ji X.-j. Huang H. ( 2015 ). Introduction of ω-3 Desaturase Obviously Changed the Fatty Acid Profile and Sterol Content of Schizochytrium Sp . J. Agric. Food Chem. 63 ( 44 ), 9770 ? 9776 . 10.1021/acs.jafc.5b04238 26494394
Reveillon D. Tunin-Ley A. Grondin I. Othmani A. Zubia M. Bunet R. ( 2019 ). Exploring the Chemodiversity of Tropical Microalgae for the Discovery of Natural Antifouling Compounds . J. Appl. Phycol. 31 ( 1 ), 319 ? 333 . 10.1007/s10811-018-1594-z
Silverman A. M. Qiao K. Xu P. Stephanopoulos G. ( 2016 ). Functional Overexpression and Characterization of Lipogenesis-Related Genes in the Oleaginous Yeast Yarrowia Lipolytica . Appl. Microbiol. Biotechnol. 100 ( 8 ), 3781 ? 3798 . 10.1007/s00253-016-7376-0 26915993
Su Y. Wang J. Shi M. Niu X. Yu X. Gao L. ( 2014 ). Metabolomic and Network Analysis of Astaxanthin-Producing Haematococcus pluvialis under Various Stress Conditions . Bioresour. Technol. 170 , 522 ? 529 . 10.1016/j.biortech.2014.08.018 25164345
Sun H. Chen H. Zang X. Hou P. Zhou B. Liu Y. ( 2015 ). Application of the Cre/loxP Site-specific Recombination System for Gene Transformation in Aurantiochytrium Limacinum . Molecules 20 ( 6 ), 10110 ? 10121 . 10.3390/molecules200610110 26039334
Sun X.-M. Ren L.-J. Ji X.-J. Chen S.-L. Guo D.-S. Huang H. ( 2016 ). Adaptive Evolution of Schizochytrium Sp. By Continuous High Oxygen Stimulations to Enhance Docosahexaenoic Acid Synthesis . Bioresour. Technol. 211 , 374 ? 381 . 10.1016/j.biortech.2016.03.093 27030957
Sun X.-M. Ren L.-J. Bi Z.-Q. Ji X.-J. Zhao Q.-Y. Huang H. ( 2018 ). Adaptive Evolution of Microalgae Schizochytrium Sp. Under High Salinity Stress to Alleviate Oxidative Damage and Improve Lipid Biosynthesis . Bioresour. Technol. 267 , 438 ? 444 . 10.1016/j.biortech.2018.07.079 30032058
Sun H. Li X. Ren Y. Zhang H. Mao X. Lao Y. ( 2020 ). Boost Carbon Availability and Value in Algal Cell for Economic Deployment of Biomass . Bioresour. Technol. 300 , 122640 . 10.1016/j.biortech.2019.122640 31887581
Tian W.-N. Braunstein L. D. Apse K. Pang J. Rose M. Tian X. ( 1999 ). Importance of Glucose-6-Phosphate Dehydrogenase Activity in Cell Death . Am. J. Physiology-Cell Physiol. 276 ( 5 ), C1121 ? C1131 . 10.1152/ajpcell.1999.276.5.c1121
Valledor L. Furuhashi T. Hanak A.-M. Weckwerth W. ( 2013 ). Systemic Cold Stress Adaptation of Chlamydomonas Reinhardtii . Mol. Cell Proteomics 12 ( 8 ), 2032 ? 2047 . 10.1074/mcp.m112.026765 23564937
Vemuri G. N. Eiteman M. A. McEwen J. E. Olsson L. Nielsen J. ( 2007 ). Increasing NADH Oxidation Reduces Overflow Metabolism in Saccharomyces cerevisiae . Proc. Natl. Acad. Sci. 104 ( 7 ), 2402 ? 2407 . 10.1073/pnas.0607469104 17287356
Veyel D. Erban A. Fehrle I. Kopka J. Schroda M. ( 2014 ). Rationales and Approaches for Studying Metabolism in Eukaryotic Microalgae . Metabolites 4 ( 2 ), 184 ? 217 . 10.3390/metabo4020184 24957022
Wang X. Lu M. Wang S. Fang Y. Wang D. Ren W. ( 2014 ). The Atmospheric and Room-Temperature Plasma (ARTP) Method on the Dextranase Activity and Structure . Int. J. Biol. Macromol. 70 , 284 ? 291 . 10.1016/j.ijbiomac.2014.07.006 25020081
Wang F. Bi Y. Diao J. Lv M. Cui J. Chen L. ( 2019 ). Metabolic Engineering to Enhance Biosynthesis of Both Docosahexaenoic Acid and Odd-Chain Fatty Acids in Schizochytrium Sp. S31 . Biotechnol. Biofuels 12 , 141 . 10.1186/s13068-019-1484-x 31182976
Willette S. Gill S. S. Dungan B. Schaub T. M. Jarvis J. M. St. Hilaire R. ( 2018 ). Alterations in Lipidome and Metabolome Profiles of Nannochloropsis salina in Response to Reduced Culture Temperature during Sinusoidal Temperature and Light . Algal Res. 32 , 79 ? 92 . 10.1016/j.algal.2018.03.001
Xu P. Qiao K. Stephanopoulos G. ( 2017 ). Engineering Oxidative Stress Defense Pathways to Build a Robust Lipid Production Platform in Yarrowia Lipolytica . Biotechnol. Bioeng. 114 ( 7 ), 1521 ? 1530 . 10.1002/bit.26285 28295166
Xue J. Balamurugan S. Li D.-W. Liu Y.-H. Zeng H. Wang L. ( 2017 ). Glucose-6-phosphate Dehydrogenase as a Target for Highly Efficient Fatty Acid Biosynthesis in Microalgae by Enhancing NADPH Supply . Metab. Eng. 41 , 212 ? 221 . 10.1016/j.ymben.2017.04.008 28465173
Xue J. Chen T.-T. Zheng J.-W. Balamurugan S. Cai J.-X. Liu Y.-H. ( 2018 ). The Role of Diatom Glucose-6-Phosphate Dehydrogenase on Lipogenic NADPH Supply in green Microalgae through Plastidial Oxidative Pentose Phosphate Pathway . Appl. Microbiol. Biotechnol. 102 ( 24 ), 10803 ? 10815 . 10.1007/s00253-018-9415-5 30349933
Yin F.-W. Zhu S.-Y. Guo D.-S. Ren L.-J. Ji X.-J. Huang H. ( 2019 ). Development of a Strategy for the Production of Docosahexaenoic Acid by Schizochytrium Sp. From Cane Molasses and Algae-Residue . Bioresour. Technol. 271 , 118 ? 124 . 10.1016/j.biortech.2018.09.114 30265951
Yu T. Zhou Y. J. Huang M. Liu Q. Pereira R. David F. ( 2018 ). Reprogramming Yeast Metabolism from Alcoholic Fermentation to Lipogenesis . Cell 174 ( 6 ), 1549 ? 1558 . 10.1016/j.cell.2018.07.013 30100189
Zhao B. Li Y. Mbifile M. D. Li C. Yang H. Wang W. ( 2017 ). Improvement of Docosahexaenoic Acid Fermentation from Schizochytrium Sp. AB-610 by Staged pH Control Based on Cell Morphological Changes . Eng. Life Sci. 17 ( 9 ), 981 ? 988 . 10.1002/elsc.201600249 32624848
Zhao B. Li Y. Li C. Yang H. Wang W. ( 2018 ). Enhancement of Schizochytrium DHA Synthesis by Plasma Mutagenesis Aided with Malonic Acid and Zeocin Screening . Appl. Microbiol. Biotechnol. 102 ( 5 ), 2351 ? 2361 . 10.1007/s00253-018-8756-4 29356868
Zhou B. Xiao J. F. Tuli L. Ressom H. W. ( 2012 ). LC-MS-based Metabolomics . Mol. Biosyst. 8 ( 2 ), 470 ? 481 . 10.1039/c1mb05350g 22041788
Zwickl P. Fabry S. Bogedain C. Haas A. Hensel R. ( 1990 ). Glyceraldehyde-3-phosphate Dehydrogenase from the Hyperthermophilic Archaebacterium Pyrococcus Woesei : Characterization of the Enzyme, Cloning and Sequencing of the Gene, and Expression in Escherichia coli . J. Bacteriol. 172 ( 8 ), 4329 ? 4338 . 10.1128/jb.172.8.4329-4338.1990 2165475
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.