$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Inverse design of organic light-emitting diode structure based on deep neural networks 원문보기

Nanophotonics, v.10 no.18, 2021년, pp.4533 - 4541  

Kim, Sanmun (School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea) ,  Shin, Jeong Min (School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea) ,  Lee, Jaeho (School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea) ,  Park, Chanhyung (School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea) ,  Lee, Songju (School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea) ,  Park, Juho (School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea) ,  Seo, Dongjin (School of Electrical Engineering, Korea Advanc) ,  Park, Sehong ,  Park, Chan Y. ,  Jang, Min Seok

Abstract AI-Helper 아이콘AI-Helper

AbstractThe optical properties of thin-film light emitting diodes (LEDs) are strongly dependent on their structures due to light interference inside the devices. However, the complexity of the design space grows exponentially with the number of design parameters, making it challenging to optimize th...

Keyword

참고문헌 (37)

  1. [1] C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. , vol. 51, no. 12, pp. 913-915, 1987, https://doi.org/10.1063/1.98799 . Tang C. W. Vanslyke S. A. Organic electroluminescent diodes Appl. Phys. Lett. 51 12 913 915 1987 https://doi.org/10.1063/1.98799 

  2. [2] T. Sekitani, H. Nakajima, H. Maeda, et al.., “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. , vol. 8, no. 6, pp. 494-499, 2009, https://doi.org/10.1038/nmat2459 . Sekitani T. Nakajima H. Maeda H. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors Nat. Mater. 8 6 494 499 2009 https://doi.org/10.1038/nmat2459 

  3. [3] M. S. White, M. Kaltenbrunner, E. D. Glowacki, et al.., “Ultrathin, highly flexible and stretchable PLEDs,” Nat. Photonics , vol. 7, no. 10, pp. 811-816, 2013, https://doi.org/10.1038/nphoton.2013.188 . White M. S. Kaltenbrunner M. Glowacki E. D. Ultrathin, highly flexible and stretchable PLEDs Nat. Photonics 7 10 811 816 2013 https://doi.org/10.1038/nphoton.2013.188 

  4. [4] F. So, J. Kido, and P. Burrows, “Organic light-emitting devices for solid-state lighting,” MRS Bull. , vol. 33, no. 7, pp. 663-669, 2008, https://doi.org/10.1557/mrs2008.137 . So F. Kido J. Burrows P. Organic light-emitting devices for solid-state lighting MRS Bull. 33 7 663 669 2008 https://doi.org/10.1557/mrs2008.137 

  5. [5] H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. , vol. 7, p. 17168, 2018, https://doi.org/10.1038/lsa.2017.168 . Chen H. W. Lee J. H. Lin B. Y. Chen S. Wu S. T. Liquid crystal display and organic light-emitting diode display: present status and future perspectives Light Sci. Appl. 7 17168 2018 https://doi.org/10.1038/lsa.2017.168 

  6. [6] K. T. Kamtekar, A. P. Monkman, and M. R. Bryce, “Recent advances in white organic light-emitting materials and devices (WOLEDs),” Adv. Mater. , vol. 22, no. 5, pp. 572-582, 2010, https://doi.org/10.1002/adma.200902148 . Kamtekar K. T. Monkman A. P. Bryce M. R. Recent advances in white organic light-emitting materials and devices (WOLEDs) Adv. Mater. 22 5 572 582 2010 https://doi.org/10.1002/adma.200902148 

  7. [7] J.-K. Yoon, H.-W. Park, J.-S. Son, et al.., “The study of picture quality of OLED TV with WRGB OLEDs structure,” Soc. Inf. Disp. , vol. 44, no. 1, pp. 326-329, 2013, https://doi.org/10.1002/j.2168-0159.2013.tb06212.x . Yoon J.-K. Park H.-W. Son J.-S. The study of picture quality of OLED TV with WRGB OLEDs structure Soc. Inf. Disp. 44 1 326 329 2013 https://doi.org/10.1002/j.2168-0159.2013.tb06212.x 

  8. [8] Y. G. Huang, E. L. Hsiang, M. Y. Deng, and S. T. Wu, “Mini-LED, micro-LED and OLED displays: present status and future perspectives,” Light Sci. Appl. , vol. 9, no. 1, p. 105, 2020, https://doi.org/10.1038/s41377-020-0341-9 . Huang Y. G. Hsiang E. L. Deng M. Y. Wu S. T. Mini-LED, micro-LED and OLED displays: present status and future perspectives Light Sci. Appl. 9 1 105 2020 https://doi.org/10.1038/s41377-020-0341-9 

  9. [9] L. H. Smith, J. A. E. Wasey, and W. L. Barnes, “Light outcoupling efficiency of top-emitting organic light-emitting diodes,” Appl. Phys. Lett. , vol. 84, no. 16, pp. 2986-2988, 2004, https://doi.org/10.1063/1.1712036 . Smith L. H. Wasey J. A. E. Barnes W. L. Light outcoupling efficiency of top-emitting organic light-emitting diodes Appl. Phys. Lett. 84 16 2986 2988 2004 https://doi.org/10.1063/1.1712036 

  10. [10] J. Chan, A. D. Rakic, C. Y. Kwong, et al.., “Optimization of organic light emitting diode structures,” Proc. SPIE , vol. 5277, pp. 311-319, 2004, https://doi.org/10.1117/12.522861 . Chan J. Rakic A. D. Kwong C. Y. Optimization of organic light emitting diode structures Proc. SPIE 5277 311 319 2004 https://doi.org/10.1117/12.522861 

  11. [11] W. G. Quirino, K. C. Teixeira, C. Legnani, et al.., “Improved multilayer OLED architecture using evolutionary genetic algorithm,” Thin Solid Films , vol. 518, no. 5, pp. 1382-1385, 2009, https://doi.org/10.1016/j.tsf.2009.09.117 . Quirino W. G. Teixeira K. C. Legnani C. Improved multilayer OLED architecture using evolutionary genetic algorithm Thin Solid Films 518 5 1382 1385 2009 https://doi.org/10.1016/j.tsf.2009.09.117 

  12. [12] J. Lee, T. H. Han, M. H. Park, et al.., “Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes,” Nat. Commun. , vol. 7, p. 11791, 2016, https://doi.org/10.1038/ncomms11791 . Lee J. Han T. H. Park M. H. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes Nat. Commun. 7 11791 2016 https://doi.org/10.1038/ncomms11791 

  13. [13] C. C. Nadell, B. H. Huang, J. M. Malof, and W. J. Padilla, “Deep learning for accelerated all-dielectric metasurface design,” Opt. Express , vol. 27, no. 20, pp. 27523-27535, 2019, https://doi.org/10.1364/oe.27.027523 . Nadell C. C. Huang B. H. Malof J. M. Padilla W. J. Deep learning for accelerated all-dielectric metasurface design Opt. Express 27 20 27523 27535 2019 https://doi.org/10.1364/oe.27.027523 

  14. [14] Y. Kiarashinejad, S. Abdollahramezani, and A. Adibi, “Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures,” Npj Comput. Mater. , vol. 6, no. 1, p. 12, 2020, https://doi.org/10.1038/s41524-020-0276-y . Kiarashinejad Y. Abdollahramezani S. Adibi A. Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures Npj Comput. Mater. 6 1 12 2020 https://doi.org/10.1038/s41524-020-0276-y 

  15. [15] I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, “Plasmonic nanostructure design and characterization via deep learning,” Light Sci. Appl. , vol. 7, p. 60, 2018, https://doi.org/10.1038/s41377-018-0060-7 . Malkiel I. Mrejen M. Nagler A. Arieli U. Wolf L. Suchowski H. Plasmonic nanostructure design and characterization via deep learning Light Sci. Appl. 7 60 2018 https://doi.org/10.1038/s41377-018-0060-7 

  16. [16] P. R. Wiecha and O. L. Muskens, “Deep learning meets nanophotonics: a generalized accurate predictor for near fields and far fields of arbitrary 3D nanostructures,” Nano Lett. , vol. 20, no. 1, pp. 329-338, 2020, https://doi.org/10.1021/acs.nanolett.9b03971 . Wiecha P. R. Muskens O. L. Deep learning meets nanophotonics: a generalized accurate predictor for near fields and far fields of arbitrary 3D nanostructures Nano Lett. 20 1 329 338 2020 https://doi.org/10.1021/acs.nanolett.9b03971 

  17. [17] W. Ma, F. Cheng, and Y. M. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano , vol. 12, no. 6, pp. 6326-6334, 2018, https://doi.org/10.1021/acsnano.8b03569 . Ma W. Cheng F. Liu Y. M. Deep-learning-enabled on-demand design of chiral metamaterials ACS Nano 12 6 6326 6334 2018 https://doi.org/10.1021/acsnano.8b03569 

  18. [18] J. Lenaerts, H. Pinson, and V. Ginis, “Artificial neural networks for inverse design of resonant nanophotonic components with oscillatory loss landscapes,” Nanophotonics , vol. 10, no. 1, pp. 385-392, 2021, https://doi.org/10.1515/9783110710687-029 . Lenaerts J. Pinson H. Ginis V. Artificial neural networks for inverse design of resonant nanophotonic components with oscillatory loss landscapes Nanophotonics 10 1 385 392 2021 https://doi.org/10.1515/9783110710687-029 

  19. [19] J. Peurifoy, Y. C. Shen, L. Jing, et al.., “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. , vol. 4, no. 6, 2018, Art no. eaar4206, https://doi.org/10.1126/sciadv.aar4206 . Peurifoy J. Shen Y. C. Jing L. Nanophotonic particle simulation and inverse design using artificial neural networks Sci. Adv. 4 6 2018 eaar4206 https://doi.org/10.1126/sciadv.aar4206 

  20. [20] J. Q. Jiang, D. Sell, S. Hoyer, J. Hickey, J. J. Yang, and J. A. Fan, “Free-form diffractive metagrating design based on generative adversarial networks,” ACS Nano , vol. 13, no. 8, pp. 8872-8878, 2019, https://doi.org/10.1021/acsnano.9b02371 . Jiang J. Q. Sell D. Hoyer S. Hickey J. Yang J. J. Fan J. A. Free-form diffractive metagrating design based on generative adversarial networks ACS Nano 13 8 8872 8878 2019 https://doi.org/10.1021/acsnano.9b02371 

  21. [21] Z. C. Liu, D. Y. Zhu, S. P. Rodrigues, K. T. Lee, and W. S. Cai, “Generative model for the inverse design of metasurfaces,” Nano Lett. , vol. 18, no. 10, pp. 6570-6576, 2018, https://doi.org/10.1021/acs.nanolett.8b03171 . Liu Z. C. Zhu D. Y. Rodrigues S. P. Lee K. T. Cai W. S. Generative model for the inverse design of metasurfaces Nano Lett. 18 10 6570 6576 2018 https://doi.org/10.1021/acs.nanolett.8b03171 

  22. [22] F. F. Wen, J. Q. Jiang, and J. A. Fan, “Robust freeform metasurface design based on progressively growing generative networks,” ACS Photonics , vol. 7, no. 8, pp. 2098-2104, 2020, https://doi.org/10.1021/acsphotonics.0c00539 . Wen F. F. Jiang J. Q. Fan J. A. Robust freeform metasurface design based on progressively growing generative networks ACS Photonics 7 8 2098 2104 2020 https://doi.org/10.1021/acsphotonics.0c00539 

  23. [23] J. Q. Jiang and J. A. Fan, “Global optimization of dielectric metasurfaces using a physics-driven neural network,” Nano Lett. , vol. 19, no. 8, pp. 5366-5372, 2019, https://doi.org/10.1021/acs.nanolett.9b01857 . Jiang J. Q. Fan J. A. Global optimization of dielectric metasurfaces using a physics-driven neural network Nano Lett. 19 8 5366 5372 2019 https://doi.org/10.1021/acs.nanolett.9b01857 

  24. [24] I. Sajedian, J. Kim, and J. Rho, “Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks,” Microsyst. Nanoeng. , vol. 5, p. 27, 2019, https://doi.org/10.1038/s41378-019-0069-y . Sajedian I. Kim J. Rho J. Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks Microsyst. Nanoeng. 5 27 2019 https://doi.org/10.1038/s41378-019-0069-y 

  25. [25] W. Ma, F. Cheng, Y. H. Xu, Q. L. Wen, and Y. M. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” Adv. Mater. , vol. 31, no. 35, 2019, Art no. 1901111, https://doi.org/10.1002/adma.201901111 . Ma W. Cheng F. Xu Y. H. Wen Q. L. Liu Y. M. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy Adv. Mater. 31 35 2019 1901111 https://doi.org/10.1002/adma.201901111 

  26. [26] M. A. Bin Janai, K. L. Woon, and C. S. Chan, “Design of efficient blue phosphorescent bottom emitting light emitting diodes by machine learning approach,” Org. Electron. , vol. 63, pp. 257-266, 2018, https://doi.org/10.1016/j.orgel.2018.09.029 . Bin Janai M. A. Woon K. L. Chan C. S. Design of efficient blue phosphorescent bottom emitting light emitting diodes by machine learning approach Org. Electron. 63 257 266 2018 https://doi.org/10.1016/j.orgel.2018.09.029 

  27. [27] R. Gomez-Bombarelli, J. Aguilera-Iparraguirre, T. D. Hirzel, et al.., “Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach,” Nat. Mater. , vol. 15, no. 10, pp. 1120-1127, 2016, https://doi.org/10.1038/nmat4717 . Gomez-Bombarelli R. Aguilera-Iparraguirre J. Hirzel T. D. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach Nat. Mater. 15 10 1120 1127 2016 https://doi.org/10.1038/nmat4717 

  28. [28] Shahnawaz, S. S. Swayamprabha, M. R. Nagar, et al.., “Hole-transporting materials for organic light-emitting diodes: an overview,” J. Mater. Chem. C , vol. 7, no. 24, pp. 7144-7158, 2019, https://doi.org/10.1039/c9tc01712g . Shahnawaz Swayamprabha S. S. Nagar M. R. Hole-transporting materials for organic light-emitting diodes: an overview J. Mater. Chem. C 7 24 7144 7158 2019 https://doi.org/10.1039/c9tc01712g 

  29. [29] R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near metal interfaces,” Adv. Chem. Phys ., vol. 37, pp. 1-65, 1978. Chance R. R. Prock A. Silbey R. Molecular fluorescence and energy transfer near metal interfaces Adv. Chem. Phys 37 1 65 1978 

  30. [30] D. J. Liu, Y. X. Tan, E. Khoram, and Z. F. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics , vol. 5, no. 4, pp. 1365-1369, 2018, https://doi.org/10.1021/acsphotonics.7b01377 . Liu D. J. Tan Y. X. Khoram E. Yu Z. F. Training deep neural networks for the inverse design of nanophotonic structures ACS Photonics 5 4 1365 1369 2018 https://doi.org/10.1021/acsphotonics.7b01377 

  31. [31] C. Yeung, J. M. Tsai, B. King, et al.., “Multiplexed supercell metasurface design and optimization with tandem residual networks,” Nanophotonics , vol. 10, no. 3, pp. 1133-1143, 2021, https://doi.org/10.1515/nanoph-2020-0549 . Yeung C. Tsai J. M. King B. Multiplexed supercell metasurface design and optimization with tandem residual networks Nanophotonics 10 3 1133 1143 2021 https://doi.org/10.1515/nanoph-2020-0549 

  32. [32] J. M. Johnson and Y. Rahmatsamii, “Genetic algorithm optimization and its application to antenna design,” in Proc. of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting , Seattle, WA, USA, IEEE, vol. 1, 1994, pp. 326-329. https://doi.org/10.1109/APS.1994.407746 . Johnson J. M. Rahmatsamii Y. Genetic algorithm optimization and its application to antenna design Proc. of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting 1 1994 326 329 https://doi.org/10.1109/APS.1994.407746 

  33. [33] K. Stanislawska, K. Krawiec, and T. Vihma, “Genetic programming for estimation of heat flux between the atmosphere and sea ice in polar regions,” in Proc. of the 2015 Annual Conf. on Genetic and Evolutionary Computation , Madrid, Spain, Association for Computing Machinery, 2015, pp. 1279-1286. https://doi.org/10.1145/2739480.2754675 . Stanislawska K. Krawiec K. Vihma T. Genetic programming for estimation of heat flux between the atmosphere and sea ice in polar regions Proc. of the 2015 Annual Conf. on Genetic and Evolutionary Computation 2015 1279 1286 https://doi.org/10.1145/2739480.2754675 

  34. [34] G. J. Tan, J. H. Lee, S. C. Lin, R. D. Zhu, S. H. Choi, and S. T. Wu, “Analysis and optimization on the angular color shift of RGB OLED displays,” Opt. Express , vol. 25, no. 26, pp. 33629-33642, 2017, https://doi.org/10.1364/oe.25.033629 . Tan G. J. Lee J. H. Lin S. C. Zhu R. D. Choi S. H. Wu S. T. Analysis and optimization on the angular color shift of RGB OLED displays Opt. Express 25 26 33629 33642 2017 https://doi.org/10.1364/oe.25.033629 

  35. [35] Y. N. Lai, C. H. Chang, P. C. Wang, and Y. H. Chu, “Highly efficient flexible organic light-emitting diodes based on a high-temperature durable mica substrate,” Org. Electron. , vol. 75, 2019, Art no. 105442, https://doi.org/10.1016/j.orgel.2019.105442 . Lai Y. N. Chang C. H. Wang P. C. Chu Y. H. Highly efficient flexible organic light-emitting diodes based on a high-temperature durable mica substrate Org. Electron. 75 2019 105442 https://doi.org/10.1016/j.orgel.2019.105442 

  36. [36] E. Archer, S. Hillebrandt, C. Keum, et al.., “Accurate efficiency measurements of organic light-emitting diodes via angle-resolved spectroscopy,” Adv. Opt. Mater. , vol. 9, no. 1, 2021, Art no. 2000838, https://doi.org/10.1002/adom.202000838 . Archer E. Hillebrandt S. Keum C. Accurate efficiency measurements of organic light-emitting diodes via angle-resolved spectroscopy Adv. Opt. Mater. 9 1 2021 2000838 https://doi.org/10.1002/adom.202000838 

  37. [37] M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. , vol. 94, no. 8, 2009, Art no. 083303, https://doi.org/10.1063/1.3088854 . Thomschke M. Nitsche R. Furno M. Leo K. Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes Appl. Phys. Lett. 94 8 2009 083303 https://doi.org/10.1063/1.3088854 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로