$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Unraveling the role of cobalt in the direct conversion of CO2 to high-yield liquid fuels and lube base oil

Applied catalysis. B, Environmental, v.305, 2022년, pp.121041 -   

Jo, Heuntae (School of Mechanical Engineering, Sungkyunkwan University) ,  Khan, Muhammad Kashif (School of Mechanical Engineering, Sungkyunkwan University) ,  Irshad, Muhammad (School of Chemical Engineering, Sungkyunkwan University) ,  Arshad, Malik Waqar (Carbon Resource Institute, Korea Research Institute of Chemical Technology) ,  Kim, Seok Ki (Carbon Resource Institute, Korea Research Institute of Chemical Technology) ,  Kim, Jaehoon (School of Mechanical Engineering, Sungkyunkwan University)

Abstract AI-Helper 아이콘AI-Helper

Abstract Owing to their high CO2 methanation activity, the direct hydrogenation of CO2 to long-chain C5+ over Co-based catalysts is challenging. Here, we demonstrate a Na- and Mn-promoted, core-shell Co@CoOx/Co2C catalyst that produces a high C5+ yield of 21.1% at a CO2 conversion of 64.3% and low ...

Keyword

참고문헌 (60)

  1. Energy Environ. Sci. Porosoff 9 62 2016 10.1039/C5EE02657A Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities 

  2. Appl. Catal. B Sibi 301 2022 10.1016/j.apcatb.2021.120813 High-yield synthesis of BTEX over Na-FeAlOx/Zn-HZSM-5@SiO2 by direct CO2 conversion and identification of surface intermediates 

  3. ACS Catal. Sibi 11 8382 2021 10.1021/acscatal.1c00747 Synthesis of monocarboxylic acids via direct CO2 conversion over Ni-Zn intermetallic catalysts 

  4. Appl. Catal. B Zhang 293 2021 10.1016/j.apcatb.2021.120207 Tuning the interaction between Na and Co2C to promote selective CO2 hydrogenation to ethanol 

  5. Catal. Commun. Gnanamani 12 936 2011 10.1016/j.catcom.2011.03.002 Fischer-Tropsch synthesis: effect of CO2 containing syngas over Pt promoted Co/γ-Al2O3 and K-promoted Fe catalysts 

  6. Appl. Catal. B Yang 282 2021 10.1016/j.apcatb.2020.119554 Revealing property-performance relationships for efficient CO2 hydrogenation to higher hydrocarbons over Fe-based catalysts: statistical analysis of literature data and its experimental validation 

  7. Chem. Rev. Khodakov 107 1692 2007 10.1021/cr050972v Advances in the development of novel cobalt Fischer−Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels 

  8. Nature Zhong 538 84 2016 10.1038/nature19786 Cobalt carbide nanoprisms for direct production of lower olefins from syngas 

  9. Appl. Catal. A Visconti 355 61 2009 10.1016/j.apcata.2008.11.027 Fischer-Tropsch synthesis on a Co/Al2O3 catalyst with CO2 containing syngas 

  10. J. CO2 Util. Saeidi 5 66 2014 10.1016/j.jcou.2013.12.005 Hydrogenation of CO2 to value-added products-a review and potential future developments 

  11. ACS Catal. Kim 10 8660 2020 10.1021/acscatal.0c01417 Cobalt ferrite nanoparticles to form a catalytic Co-Fe alloy carbide phase for selective CO2 hydrogenation to light olefins 

  12. ACS Catal. Wang 9 11335 2019 10.1021/acscatal.9b04187 Cobalt-nickel catalysts for selective hydrogenation of carbon dioxide into ethanol 

  13. Energy Environ. Sci. Dorner 3 884 2010 10.1039/c001514h Heterogeneous catalytic CO2 conversion to value-added hydrocarbons 

  14. ACS Catal. Khan 10 10325 2020 10.1021/acscatal.0c02611 Selective conversion of carbon dioxide into liquid hydrocarbons and long-chain α-olefins over Fe-amorphous AlOx bifunctional catalysts 

  15. Int. J. Hydrog. Energy Susanti 37 11677 2012 10.1016/j.ijhydene.2012.05.087 High-yield hydrogen production from glucose by supercritical water gasification without added catalyst 

  16. Fuel Khan 182 650 2016 10.1016/j.fuel.2016.06.023 A non-catalytic, supercritical methanol route for effective deacidification of naphthenic acids 

  17. Phys. Rev. B Kresse 54 11169 1996 10.1103/PhysRevB.54.11169 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set 

  18. Phys. Rev. B Lee 82 2010 Higher-accuracy van der Waals density functional 

  19. ACS Catal. Zhang 7 8285 2017 10.1021/acscatal.7b02800 C2 oxygenate synthesis via Fischer-Tropsch synthesis on Co2C and Co/Co2C interface catalysts: how to control the catalyst crystal facet for optimal selectivity 

  20. Surf. Sci. Xu 605 1962 2011 10.1016/j.susc.2011.07.013 DFT studies on H2O adsorption and its effect on CO oxidation over spinel Co3O4 (110) surface 

  21. Surf. Sci. Youmbi 621 1 2014 10.1016/j.susc.2013.10.012 Structure of CoO(001) surface from DFT+U calculations 

  22. ACS Catal. Yan 9 6380 2019 10.1021/acscatal.9b01485 Surface structure of Co3O4 (111) under reactive gas-phase environments 

  23. Cramer 2013 Essentials of Computational Chemistry: Theories and Models 

  24. Phys. Rev. Lett. Garrido Torres 122 2019 10.1103/PhysRevLett.122.156001 Low-scaling algorithm for nudged elastic band calculations using a surrogate machine learning model 

  25. Catal. Sci. Technol. Rößler 9 4047 2019 10.1039/C9CY00671K Accumulation of liquid hydrocarbons during cobalt-catalyzed Fischer-Tropsch synthesis - influence of activity and chain growth probability 

  26. Nat. Commun. Wei 8 15174 2017 10.1038/ncomms15174 Directly converting CO2 into a gasoline fuel 

  27. ACS Catal. Ramirez 9 6320 2019 10.1021/acscatal.9b01466 Effect of zeolite topology and reactor configuration on the direct conversion of CO2 to light olefins and aromatics 

  28. ACS Catal. Cui 9 3866 2019 10.1021/acscatal.9b00640 Selective production of aromatics directly from carbon dioxide hydrogenation 

  29. Energy Environ. Sci. Klerk 4 1177 2011 10.1039/c0ee00692k Fischer-Tropsch fuels refinery design 

  30. ChemistrySelect Guo 3 13705 2018 10.1002/slct.201803335 Enhanced liquid fuel production from CO2 Hydrogenation: catalytic performance of bimetallic catalysts over a two-stage reactor system 

  31. ChemCatChem Bordet 10 4047 2018 10.1002/cctc.201800821 Enhancement of carbon oxides hydrogenation on iron-based nanoparticles by in-situ water removal 

  32. J. Catal. Dinse 288 104 2012 10.1016/j.jcat.2012.01.008 Effects of Mn promotion on the activity and selectivity of Co/SiO2 for Fischer-Tropsch synthesis 

  33. ACS Catal. Chen 7 8061 2017 10.1021/acscatal.7b02758 Mechanism of cobalt-catalyzed CO hydrogenation: 2. Fischer-Tropsch synthesis 

  34. ACS Catal. Chen 8 1580 2018 10.1021/acscatal.7b03639 Influence of carbon deposits on the cobalt-catalyzed Fischer-Tropsch reaction: evidence of a two-site reaction model 

  35. Chem. Mater. Martin de Vidales 7 1716 1995 10.1021/cm00057a022 Thermal behavior in air and reactivity in acid medium of cobalt manganese spinels MnxCo3-xO4 (1.ltoreq. x.ltoreq. 3) synthesized at low temperature 

  36. ACS Catal. Zhao 8 228 2018 10.1021/acscatal.7b02403 Insight into the formation of Co@Co2C catalysts for direct synthesis of higher alcohols and olefins from syngas 

  37. ACS Catal. Wu 7 1150 2017 10.1021/acscatal.6b02835 Ambient-pressure X-ray photoelectron spectroscopy study of cobalt foil model catalyst under CO, H2, and their mixtures 

  38. ACS Catal. Zhu 7 2800 2017 10.1021/acscatal.7b00221 Role of manganese oxide in syngas conversion to light olefins 

  39. Appl. Phys. Lett. Zhou 79 3512 2001 10.1063/1.1419235 Size-induced lattice relaxation in CeO2 nanoparticles 

  40. ACS Catal. Lin 9 9554 2019 10.1021/acscatal.9b02513 Fischer-Tropsch synthesis to olefins: catalytic performance and structure evolution of Co2C-based catalysts under a CO2 environment 

  41. ChemCatChem Paterson 10 5154 2018 10.1002/cctc.201800883 Manipulation of Fischer-Tropsch synthesis for production of higher alcohols using manganese promoters 

  42. Appl. Catal. A Sanchez-Escribano 316 68 2007 10.1016/j.apcata.2006.09.020 On the mechanisms and the selectivity determining steps in syngas conversion over supported metal catalysts: an IR study 

  43. Pavia 2015 Introduction to Spectroscopy 

  44. Appl. Catal. A Jiang 209 59 2001 10.1016/S0926-860X(00)00755-9 Adsorption properties of cobalt and cobalt-manganese catalysts studied by in situ diffuse reflectance FTIR using CO and CO+H2 as probes 

  45. J. Catal. Weststrate 342 1 2016 10.1016/j.jcat.2016.07.010 Spectroscopic insights into cobalt-catalyzed Fischer-Tropsch synthesis: a review of the carbon monoxide interaction with single crystalline surfaces of cobalt 

  46. J. Catal. Morales 246 91 2007 10.1016/j.jcat.2006.11.014 Effects of manganese oxide promoter on the CO and H2 adsorption properties of titania-supported cobalt Fischer-Tropsch catalysts 

  47. J. Mol. Catal. A Chem. Das 350 75 2011 10.1016/j.molcata.2011.09.008 Synthesis, characterization and in situ DRIFTS during the CO2 hydrogenation reaction over supported cobalt catalysts 

  48. ACS Catal. Lukashuk 8 8630 2018 10.1021/acscatal.8b01237 Operando insights into CO oxidation on cobalt oxide catalysts by NAP-XPS, FTIR, and XRD 

  49. Davydov 2003 Molecular Spectroscopy of Oxide Catalyst Surfaces 

  50. ACS Catal. Johnson 5 5888 2015 10.1021/acscatal.5b01578 An Investigation into the effects of Mn promotion on the activity and selectivity of Co/SiO2 for Fischer-Tropsch synthesis: evidence for enhanced CO adsorption and dissociation 

  51. Appl. Energy Gradisher 139 335 2015 10.1016/j.apenergy.2014.10.080 Catalytic hydrogen production from fossil fuels via the water gas shift reaction 

  52. ACS Catal. Yao 9 5957 2019 10.1021/acscatal.9b01150 Quantitative determination of C-C coupling mechanisms and detailed analyses on the activity and selectivity for Fischer-Tropsch synthesis on Co(0001): microkinetic modeling with coverage effects 

  53. ACS Catal. Liu 9 7073 2019 10.1021/acscatal.9b00352 Insight into the intrinsic active site for selective production of light olefins in cobalt-catalyzed Fischer-Tropsch synthesis 

  54. J. Am. Chem. Soc. Liu 135 16284 2013 10.1021/ja408521w Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC 

  55. J. Phys. Chem. C Yu 124 11040 2020 10.1021/acs.jpcc.0c02537 Rediscovering tuning product selectivity by an energy descriptor: CH4 formation and C1-C1 coupling on the FCC Co surface 

  56. ChemCatChem Rodemerck 5 1948 2013 10.1002/cctc.201200879 Catalyst development for CO2 hydrogenation to fuels 

  57. ACS Catal. Mohandas 1 1581 2011 10.1021/cs200236q Fischer-Tropsch synthesis: characterization and reaction testing of cobalt carbide 

  58. Catal. Lett. Blanchard 2 319 1989 10.1007/BF00770230 Cobalt catalysts for the production of alcohols in the F.T. synthesis 

  59. Appl. Catal. A Gnanamani 499 39 2015 10.1016/j.apcata.2015.03.046 Fischer-Tropsch synthesis: effect of pretreatment conditions of cobalt on activity and selectivity for hydrogenation of carbon dioxide 

  60. J. Am. Chem. Soc. Tsakoumis 139 3706 2017 10.1021/jacs.6b11872 Evaluation of reoxidation thresholds for γ-Al2O3-supported cobalt catalysts under Fischer-Tropsch synthesis conditions 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로