$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Increasing Impact Strength of a Short Glass Fiber Compression Molded BMC by Shortening Fibers without Change in Equipment 원문보기

Materials, v.15 no.3, 2022년, pp.1145 -   

Faudree, Michael C. (Faculty of Liberal Arts and Science, Tokyo City University, Yokohama-shi 224-8551, Japan) ,  Nishi, Yoshitake (Graduate School of Engineering, Tokai University, Hiratsuka-shi 259-1292, Japan) ,  Salvia, Michelle (west@tsc.u-tokai.ac.jp)

Abstract AI-Helper 아이콘AI-Helper

Bird strike, volcanic rock, hailstones, micrometeoroids, or space debris can cause damage to aircraft and space vehicles, therefore their composite materials must have high impact resistance to maximize safety. In a 55% wt. CaCO3 compression molded short glass fiber polyester GFRP-BMC (bulk molded c...

주제어

참고문헌 (37)

  1. 1. Faudree M. Baer E. Hiltner A. Collister J. Characterization of Damage and Fracture Processes in Short Fiber BMC Composites by Acoustic Emission J. Compos. Mater. 1988 22 1170 1195 10.1177/002199838802201207 

  2. 2. Matykiewicz D. Barczewski M. Sterzyński T. Morphology and thermomechanical properties of epoxy composites highly filled with waste bulk molding compounds (BMC) J. Polym. Eng. 2015 35 805 811 10.1515/polyeng-2014-0330 

  3. 3. DeRosa R. Telfeyan E. Gaustad G. Mayes S. Strength and Microscopic Investigation of Unsaturated Polyester BMC Reinforced with SMC-Recyclate J. Thermoplast. Compos. Mater. 2005 18 333 349 10.1177/0892705705049560 

  4. 4. Rajaee P. Ghasemi F.A. Fasihi M. Saberian M. Experimental Analysis and Optimization of Mechanical and Physical Properties of Light-Weight Bulk Molding Compound by Design of Experiment J. Macromol. Sci. Part B 2021 60 237 256 10.1080/00222348.2020.1844409 

  5. 5. Lee T. Jeong K. Kim D. Development of a lightweight BMC material using fly ash Adv. Compos. Mater. 2017 26 55 64 10.1080/09243046.2016.1187821 

  6. 6. Faudree M. Nishi Y. Gruskiewicz M. Characterization of velocity profile of highly-filled GFRP-BMC through rectangular-duct shaped specimen during injection molding from SEM fiber orientation mapping Mater. Trans. 2013 54 1877 1883 10.2320/matertrans.M2013143 

  7. 7. Faudree M.C. Nishi Y. Tensile Strength Enhancement by Shortening Glass Fibers with Sub-Millimeter Length in Bulk Molding Polymer Compound Mater. Trans. 2010 51 2304 2310 10.2320/matertrans.M2010121 

  8. 8. Faudree M.C. Nishi Y. Gruskiewicz M. A Novel ‘Fiber Spacing’ Model of Tensile Modulus Enhancement by Shortening Fibers to Sub-Millimeter in an Injection-Molded Glass Fiber Reinforced Polymer Bulk Molding Compound (GFRP-BMC) Mater. Trans. 2014 55 1292 1298 10.2320/matertrans.M2014070 

  9. 9. Singh H. Singh T. Effect of fillers of various sizes on mechanical characterization of natural fiber polymer hybrid composites: A review Mater. Today Proc. 2019 18 5345 5350 10.1016/j.matpr.2019.07.560 

  10. 10. Rajaee P. Ghasemi F.A. Fasihi M. Saberian M. Effect of styrene-butadiene rubber and fumed silica nano-filler on the microstructure and mechanical properties of glass fiber reinforced unsaturated polyester resin Compos. Part B Eng. 2019 173 106803 10.1016/j.compositesb.2019.05.014 

  11. 11. Thomason J.L. Vlug M.A. Influence on fibre length and concentration on the properties of glass fibre reinforced polypropylene: 1. Tensile and flexural modulus Compos. Part A Appl. Sci. Manuf. 1996 27 477 484 10.1016/1359-835X(95)00065-A 

  12. 12. Thomason J. The influence of fibre length, diameter and concentration on the modulus of glass fibre reinforced polyamide 6,6 Compos. Part A Appl. Sci. Manuf. 2008 39 1732 1738 10.1016/j.compositesa.2008.08.001 

  13. 13. Thomason J.L. Vlug M.A. Influence on fibre length and concentration on the properties of glass-fibre-reinforced polypropylene: 4. Impact properties J. Compos Part A 1997 28 277 278 10.1016/S1359-835X(96)00127-3 

  14. 14. Fu S.-Y. Lauke B. Effects of fiber length and fiber orientation distributions on the tensile strength of short fiber reinforced polymers Compos. Sci. Technol. 1996 56 1179 1190 10.1016/S0266-3538(96)00072-3 

  15. 15. Huang H. Talreja R. Numerical simulation of matrix micro-cracking in short fiber reinforced polymer composites: Initiation and propagation Compos. Sci. Technol. 2006 66 2743 2757 10.1016/j.compscitech.2006.03.013 

  16. 16. Thomason J.L. The influence of fibre properties of the performance of glass fiber reinforced polyamide 6,6 Compos. Sci. Technol. 1999 59 2315 2328 10.1016/S0266-3538(99)00083-4 

  17. 17. Rezaei F. Yunus R. Ibrahim N.A. Mahdi E.S. Effect of fiber loading and fiber length on mechanical and thermal properties of short carbon fiber reinforced polypropylene composite Malays. J. Anal. Sci. 2007 11 181 188 

  18. 18. Maertens R. Hees A. Schöttl L. Liebig W. Elsner P. Weidenmann K.A. Fiber shortening during injection molding of glass fiber-reinforced phenolic molding compounds: Fiber length measurement method development and validation Polym. Technol. Mater. 2021 60 872 885 10.1080/25740881.2020.1867170 

  19. 19. Capela C. Oliveira S. Pestana J. Ferreira J. Effect of fiber length on the mechanical properties of high dosage carbon reinforced Procedia Struct. Integr. 2017 5 539 546 10.1016/j.prostr.2017.07.159 

  20. 20. Haghighatnia T. Abbasian A. Morshedianc J. Hemp fiber reinforced thermoplastic polyurethane composite: An investigation in mechanical properties Ind. Crops Prod. 2017 108 853 863 10.1016/j.indcrop.2017.07.020 

  21. 21. Seol K. Krawitz A. Richardson J. Weisbrook C. Effects of WC size and amount on the thermal residual stress in WC–Ni composites Mater. Sci. Eng. A 2005 398 15 21 10.1016/j.msea.2005.01.041 

  22. 22. Niihara K. Overcoming the fragility of ceramics (Challenge to strengthen ceramics) Ceram. Kyoujinka Fract. Toughness Ceram. 1986 21 581 589 (In Japanese) 

  23. 23. Wu C. Shen S. Li Y. Luo G. Shen Q. Gan Z. Liu J. Influence of coarse grain particles on mechanical properties and fracture behavior in multi-modal Al-based metal matrix composites Powder Technol. 2021 394 901 908 10.1016/j.powtec.2021.09.027 

  24. 24. Starink M. Syngellakis S. Shear lag models for discontinuous composites: Fibre end stresses and weak interface layers Mater. Sci. Eng. A 1999 270 270 277 10.1016/S0921-5093(99)00277-4 

  25. 25. Bauccio M.L. ASM Engineered Materials Reference Book 2nd ed. ASM International Novelty, OH, USA 1994 

  26. 26. Dragoi D. Üstündag E. Clausen B. Bourke M.A. Investigation of thermal residual stresses in tungsten-fiber/bulk metallic glass matrix composites Scr. Mater. 2001 45 245 252 10.1016/S1359-6462(01)01031-4 

  27. 27. Faudree M. Nishi Y. Gruskiewicz M. Effects of electron beam irradiation on Charpy impact value of short glass fiber (GFRP) samples with random distribution of solidification texture angles from zero to 90 degrees Mater. Trans. 2012 53 1412 2310 10.2320/matertrans.M2012145 

  28. 28. Faudree M. Nishi Y. Gruskiewicz M. Salvia M. A new glass fibered reinforced composite with improved Charpy impact properties at low and high temperatures beyond the extremes of aircraft flight Mater. Trans. 2018 59 1280 1287 10.2320/matertrans.M2018068 

  29. 29. ASTM D 6110-02 Standard test methods for determining the Charpy impact resistance of notched specimens of plastics American Society for Testing and Materials West Conshohocken, PA, USA 2002 

  30. 30. JIS K 7077 Testing method for Charpy impact strength of carbon fiber reinforced plastics Japanese Industrial Standards Committee Tokyo, Japan 1991 (In Japanese) 

  31. 31. Nishi Y. Inoue K. Salvia M. Improvement of Charpy Impact of Carbon Fiber Reinforced Polymer by Low Energy Sheet Electron Beam Irradiation Mater. Trans. 2006 47 2846 2851 10.2320/matertrans.47.2846 

  32. 32. Splett J. Iyer H. Wang C. McCowan C. National Institute of Standards and Technology (NIST) Recommended Practice Guide, Computing Uncertainty for Charpy Impact Test Machine Test Results Special publication 960-18 US Department of Commerce Boulder, CO, USA 2008 27 29 

  33. 33. Nishida T. Yasuda E. Evaluation of Dynamic Properties of Ceramics (In Japanese, Ceramics no Rikigaku Tokusei Hyouka) Nikkan Kogaku Shimbun Sha Tokyo, Japan 1986 50 51 (In Japanese) 

  34. 34. Weibull W. A Statistical Theory of the Strength of Materials Ingeniörs vetenskaps akademien nr. 151 (Generalstabens litografiska anstalts förlag) Engineer Science Academy, Lithographic Institution Publisher Stockholm, Sweden 1939 12 14 

  35. 35. Weibull W. A Statistical Theory of the Strength of Materials Ingeniörs vetenskaps akademien nr. 153 (Generalstabens litografiska anstalts förlag) Engineer Science Academy, Lithographic Institution Publisher Stockholm, Sweden 1939 16 22 

  36. 36. Quinn J.B. Quinn G.D. A practical and systematic review of Weibull statistics for reporting strengths of dental materials Dent. Mater. 2010 26 135 147 10.1016/j.dental.2009.09.006 19945745 

  37. 37. Nishi Y. Kobayashi H. Salvia M. Effects of Electron Beam Irradiation on Charpy Impact Value of GFRP Mater. Trans. 2007 48 1924 1927 10.2320/matertrans.MRA2007050 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로