$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Exploiting Tomato Genotypes to Understand Heat Stress Tolerance 원문보기

Plants, v.11 no.22, 2022년, pp.3170 -   

Fernández-Crespo, Emma (Grupo de Bioquí) ,  Liu-Xu, Luisa (mica y Biotecnologí) ,  Albert-Sidro, Carlos (a, Á) ,  Scalschi, Loredana (rea de Fisiologí) ,  Llorens, Eugenio (a Vegetal, Departamento de Biologí) ,  González-Hernández, Ana Isabel (a, Bioquí) ,  Crespo, Oscar (mica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castelló) ,  Gonzalez-Bosch, Carmen (n, Spain) ,  Camañes, Gemma (Grupo de Bioquí) ,  García-Agustín, Pilar (mica y Biotecnologí) ,  Vicedo, Begonya (a, Á)

Abstract AI-Helper 아이콘AI-Helper

Increased temperatures caused by climate change constitute a significant threat to agriculture and food security. The selection of improved crop varieties with greater tolerance to heat stress is crucial for the future of agriculture. To overcome this challenge, four traditional tomato varieties fro...

주제어

참고문헌 (78)

  1. 1. Bita C.E. Gerats T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops Front. Plant Sci. 2013 4 273 10.3389/fpls.2013.00273 23914193 

  2. 2. Battisti D.S. Naylor R.L. Historical warnings if future food insecurity with unprecedented seasonal heat Science 2009 323 240 244 10.1126/science.1164363 19131626 

  3. 3. Masson-Delmotte V.P. Zhai A. Pirani S.L. Connors C. Péan S. Berger N. Caud Y. Chen L. Goldfarb M.I. Gomis M. IPCC, 2021: Summary for Policymakers Climate Change 2021: The Physical Science Basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press Cambridge, UK New York, NY, USA 2021 3 32 

  4. 4. Iizumi T. Shiogama H. Imada Y. Hanasaki N. Takikawa H. Nishimori M. Crop production losses associated with anthropogenic climate change for 1981–2010 compared with preindustrial levels Int. J. Climatol. 2018 38 5405 5417 10.1002/joc.5818 

  5. 5. Lohani N. Singh M.B. Bhalla P.L. High temperature susceptibility of sexual reproduction in crop plants J. Exp. Bot. 2020 71 555 568 10.1093/jxb/erz426 31560053 

  6. 6. Schlenker W. Roberts M.J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change Proc. Natl. Acad. Sci. USA 2009 106 15594 15598 10.1073/pnas.0906865106 19717432 

  7. 7. Hasanuzzaman M. Nahar K. Alam M.M. Roychowdhury R. Fujita M. Physiological biochemical and molecular mechanisms of heat stress tolerance in plants Int. J. Mol. Sci. 2013 14 9643 9684 10.3390/ijms14059643 23644891 

  8. 8. Challinor A.J. Watson J. Lobell D. Howden S.M. Smith D.R. Chhetri N. A meta-analysis of crop yield under climate change and adaptation Nat. Clim. Change 2014 4 287 10.1038/nclimate2153 

  9. 9. Alsamir M. Ahmand N. Ariel V. Mahmood T. Trethiwan R. Phenotypic diversity and marker-trait association under heat stress in tomato ( Solanum lycopersicum L.) Aust. J. Crop Sci. 2019 13 578 587 10.21475/ajcs.19.13.04.p1581 

  10. 10. Firon N. Shaked R. Peet M.M. Pharr D.M. Zamski E. Rosenfeld K. Althan L. Pressman E. Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions Sci. Hortic. 2006 109 212 217 10.1016/j.scienta.2006.03.007 

  11. 11. Barnabás B. Jäger K. Fehér A. The effect of drought and heat stress on reproductive processes in cereals Plant Cell Environ. 2008 31 11 38 10.1111/j.1365-3040.2007.01727.x 17971069 

  12. 12. Mittler R. Finka A. Goloubinoff P. How do plants feel the heat? Trends Biochem. Sci. 2012 37 118 125 10.1016/j.tibs.2011.11.007 22236506 

  13. 13. Wahid A. Gelani S. Ashraf M. Foolad M.R. Heat tolerance in plants: An overview Environ. Exp. Bot. 2007 61 199 223 10.1016/j.envexpbot.2007.05.011 

  14. 14. Porch T. Hall A. Heat tolerance Genomics and Breeding for Climate Resilient Crops 2013 Kole C. Springer Berlin/Heidelberg, Germany 2013 Volume 2 167 195 

  15. 15. Prasad P.V. Bheemanahalli R. Jagadish S.K. Field crops and the fear of heat stress—Opportunities, challenges and future directions Field Crops Res. 2017 200 14 121 10.1016/j.fcr.2016.09.024 

  16. 16. Deva C.R. Urban M.O. Challinor A.J. Falloon P. Svitákova L. Enhanced Leaf Cooling Is a Pathway to Heat Tolerance in Common Bean Front. Plant Sci. 2020 28 11 19 10.3389/fpls.2020.00019 32180776 

  17. 17. Young J.C. Mechanisms of the Hsp70 chaperone system Biochem. Cell. Biol. 2010 88 291 300 10.1139/O09-175 20453930 

  18. 18. Richter K. Haslbeck M. Buchner J. The heat shock response: Life on the verge of death Mol. Cell 2010 40 253 266 10.1016/j.molcel.2010.10.006 20965420 

  19. 19. Scharf K.D. Berberich T. Ebersberger I. Nover L. The plant heat stress transcription factor (Hsf) family: Structure, function and evolution Biochim. Biophys. Acta 2012 1819 104 119 10.1016/j.bbagrm.2011.10.002 22033015 

  20. 20. Yokotani N. Ichikawa T. Kondou Y. Matsui M. Hirochika H. Iwabuchi M. Oda K. Expression of rice heat stress transcription factor OsHSFA2e enhances tolerance to environmental stresses in transgenic Arabidopsis Planta 2008 227 957 967 10.1007/s00425-007-0670-4 18064488 

  21. 21. Nishizawa A. Yabuta Y. Yoshida E. Maruta T. Yoshimura K. Shigeoka S. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress Plant J. 2006 48 535 547 10.1111/j.1365-313X.2006.02889.x 17059409 

  22. 22. Shi Q. Bao Z. Zhu Z. Ying Q. Qian Q. Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis Sativa L. Plant Growth Regul. 2006 48 127 135 10.1007/s10725-005-5482-6 

  23. 23. Mittler R. Blumwald E. The Roles of ROS and ABA in Systemic Acquired Acclimation Plant Cell 2015 27 64 70 10.1105/tpc.114.133090 25604442 

  24. 24. Tian S. Wang X. Li P. Wang H. Ji H. Xie J. Qiu Q. Shen D. Dong H. Plant Aquaporin AtPIP1;4 Links Apoplastic H 2 O 2 Induction to Disease Immunity Pathways Plant Physiol. 2016 171 1635 1650 10.1104/pp.15.01237 26945050 

  25. 25. Devireddy A.R. Tschaplinski T.J. Tuskan G.A. Muchero W. Chen J.G. Role of Reactive Oxygen Species and Hormones in Plant Responses to Temperature Changes Int. J. Mol. Sci. 2021 22 8843 10.3390/ijms22168843 34445546 

  26. 26. Baxter A. Mittler R. Suzuki N. ROS as key players in plant stress signalling J. Exp. Bot. 2014 65 1229 1240 10.1093/jxb/ert375 24253197 

  27. 27. Muñoz-Espinoza V.A. López-Climent M.F. Casaretto J.A. Gomez-Cadenas A. Water Stress Responses of Tomato Mutants Impaired in Hormone Biosynthesis Reveal Abscisic Acid, Jasmonic Acid and Salicylic Acid Interactions Front. Plant Sci. 2015 6 997 10.3389/fpls.2015.00997 26635826 

  28. 28. Ozga J.A. Kaur H. Savada R.P. Reinecke D.M. Hormonal regulation of reproductive growth under normal and heat-stress conditions in legume and other model crop species J. Exp. Bot. 2016 68 1885 1894 10.1093/jxb/erw464 28011717 

  29. 29. Wang X. Zhuang L. Shi Y. Huang B. Up-Regulation of HSFA2c and HSPs by ABA Contributing to Improved Heat Tolerance in Tall Fescue and Arabidopsis Int. J. Mol. Sci. 2017 18 1981 10.3390/ijms18091981 28914758 

  30. 30. Huang Y.C. Niu C.Y. Yang C.R. Jinn T.L. The Heat Stress Factor HSFA6b Connects ABA Signaling and ABA-Mediated Heat Responses Plant Physiol. 2016 172 1182 1199 10.1104/pp.16.00860 27493213 

  31. 31. Clarke S.M. Mur L.A. Wood J.E. Scott I.M. Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana Plant J. 2004 38 432 447 10.1111/j.1365-313X.2004.02054.x 15086804 

  32. 32. Rai K. Pandey N. Rai S.P. Salicylic acid and nitric oxide signaling in plant heat stress Physiol. Plant 2019 168 241 255 10.1111/ppl.12958 30843232 

  33. 33. Wassie M. Zhang W. Zhang Q. Ji K. Cao L. Chen L. Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa ( Medicago sativa L.) Ecotoxicol. Environ. Saf. 2020 191 110206 10.1016/j.ecoenv.2020.110206 31954923 

  34. 34. Ilahy R. Piro G. Tlili I. Riahi A. Sihem R. Ouerghi I. Hdider G. Lenucci M.S. Fractionate analysis of the phytochemical composition and antioxidant activities in advanced breeding lines of high-lycopene tomatoes Food Funct. 2016 7 574 583 10.1039/C5FO00553A 26462607 

  35. 35. Alhaithloul H.A.S. Galal F.H. Seufi A.M. Effect of extreme temperature changes on phenolic, flavonoid contents and antioxidant activity of tomato seedlings ( Solanum lycopersicum L.) PeerJ 2021 9 e11193 10.7717/peerj.11193 34026345 

  36. 36. Mierziak J. Kostyn K. Kulma A. Flavonoids as important molecules of plant interactions with the environment Molecules 2014 19 16240 16265 10.3390/molecules191016240 25310150 

  37. 37. Hassan M.U. Ghareeb R.Y. Nawaz M. Mahmood A. Shah A.N. Abdel-Megeed A. Abdelsalam N.R. Hashem M. Alamri S. Thabit M.A. Melatonin: A Vital Pro-Tectant for Crops against Heat Stress: Mechanisms and Prospects Agronomy 2022 12 1116 10.3390/agronomy12051116 

  38. 38. Arnao M.B. Ruiz J.H. Melatonin and its relationship to plant hormones Ann. Bot. 2017 121 195 207 10.1093/aob/mcx114 

  39. 39. Nawaz K. Chaudhary R. Sarwar A. Ahmad B. Gul A. Hano C. Abbasi B. Anjum S. Melatonin as Master Regulator in Plant Growth, Development and Stress Alleviator for Sustainable Agricultural Production: Current Status and Future Perspectives Sustainability 2020 13 294 10.3390/su13010294 

  40. 40. Varghese N. Alyammahi O. Nasreddine S. Alhassani A. Gururani M.A. Melatonin Positively Influences the Photosynthetic Machinery and Antioxidant System of Avena sativa during Salinity Stress Plants 2019 8 610 10.3390/plants8120610 31888189 

  41. 41. Buttar Z.A. Wu S.N. Arnao M.B. Wang C. Ullah I. Wang C. Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery Plants 2020 9 809 10.3390/plants9070809 32605176 

  42. 42. Ding F. Wang M. Liu B. Zhang S. Exogenous Melatonin Mitigates Photoinhibition by Accelerating Non-photochemical Quenching in Tomato Seedlings Exposed to Moderate Light during Chilling Front. Plant Sci. 2017 8 244 10.3389/fpls.2017.00244 28265283 

  43. 43. Martinez V. Nieves-Cordones M. Lopez-Delacalle M. Rodenas R. Mestre T.C. Garcia-Sanchez F. Rubio F. Nortes P.A. Mittler R. Rivero R.M. Tolerance to Stress Combination in Tomato Plants: New Insights in the Protective Role of Melatonin Molecules 2018 23 535 10.3390/molecules23030535 29495548 

  44. 44. Sakata T. Higashitani A. Male sterility accompanied with abnormal anther development in plants—Genes and environmental stresses with special reference to high temperature injury Int. J. Plant Dev. Biol. 2008 2 42 51 

  45. 45. Shanmugam S. Kjaer K.H. Ottosen C.O. Rosenqvist E. Sharma D.K. Wollenweber B. The alleviating effect of elevated CO 2 on heat stress susceptibility of two wheat ( Triticum aestivum L.) cultivars J. Agron. Crop Sci. 2013 199 340 350 10.1111/jac.12023 

  46. 46. Sharma D.K. Andersen S.B. Ottosen C.O. Rosenqvist E. Wheat cultivars selected for high F v /F m under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter Physiol. Plant 2015 153 284 298 10.1111/ppl.12245 24962705 

  47. 47. Ayenan M.A.T. Danquah A. Hanson P. Ampomah-Dwamena C. Sodedji F.A.K. Asante I.K. Danquah E.Y. Accelerating Breeding for Heat Tolerance in Tomato ( Solanum lycopersicum L.): An Integrated Approach Agronomy 2019 9 720 10.3390/agronomy9110720 

  48. 48. Bineau E. Diouf I. Carretero Y. Duboscq R. Bitton F. Djari A. Zouine M. Causse M. Genetic diversity of tomato response to heat stress at the QTL and transcriptome levels Plant J. 2021 107 1213 1227 10.1111/tpj.15379 34160103 

  49. 49. Hoshikawa K. Pham D. Ezura H. Schafleitner R. Nakashima K. Genetic and Molecular Mechanisms Conferring Heat Stress Tolerance in Tomato Plants Front. Plant Sci. 2021 12 786688 10.3389/fpls.2021.786688 35003175 

  50. 50. Villa T.C. Maxted N. Scholten M.A. Ford-Lloyd B.V. Defining and identifying crop landraces Plant Genet. Res. 2005 3 373 384 10.1079/PGR200591 

  51. 51. Lázaro A. Tomato landraces: An analysis of diversity and preferences Plant Genet. Resour. 2018 16 315 324 10.1017/S1479262117000351 

  52. 52. Henareh M. Dursun A. Mandoulakani B.A. Genetic diversity in tomato landraces collected from Turkey and Iran revealed by morphological characters Acta Sci. Pol. Hortorum Cultus 2015 14 87 96 

  53. 53. Jagadish S.V.K. Way D.A. Sharkey T.D. Plant heat stress: Concepts directing future research Plant Cell Environ. 2021 44 1992 2005 10.1111/pce.14050 33745205 

  54. 54. Machado S. Paulsen G.M. Combined effects of drought and high temperature on water relations of wheat and sorghum Plant Soil 2001 233 179 187 10.1023/A:1010346601643 

  55. 55. Raza A. Razzaq A. Mehmood S.S. Zou X. Zhang X. Lv Y. Xu J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review Plants 2019 30 34 10.3390/plants8020034 30704089 

  56. 56. Farooq M. Hussain M. Ul-Allah S. Siddique K.H. Physiological and agronomic approaches for improving water-use efficiency in crop plants Agric. Water Manag. 2019 219 95 108 10.1016/j.agwat.2019.04.010 

  57. 57. Allakhverdiev S.I. Hayashi H. Nishiyama Y. Ivanov A.G. Aliev J.A. Klimov V.V. Murata N. Carpentier R. Glycinebetaine protects the D1/D2/Cytb559 complex of photosystem II against photo-induced and heat-induced inactivation J. Plant Physiol. 2003 160 41 49 10.1078/0176-1617-00845 12685044 

  58. 58. Jackson-Constan D. Kenneth K. Arabidopsis genes encoding components of the chloroplastic protein import apparatus Plant Physiol. 2001 125 1567 1576 10.1104/pp.125.4.1567 11299338 

  59. 59. Schroda M. Vallon O. Wollman F.A. Beck C.F. A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition Plant Cell 1999 11 1165 1178 10.1105/tpc.11.6.1165 10368186 

  60. 60. Wang W. Vinocur B. Shoseyov O. Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response Trends Plant 2004 9 244 252 10.1016/j.tplants.2004.03.006 

  61. 61. Yamada K. Fukao Y. Hayashi M. Fukazawa M. Suzuki I. Nishimura M. Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana J. Biol. Chem. 2007 282 37794 37804 10.1074/jbc.M707168200 17965410 

  62. 62. Xu J. Xue C. Xue D. Zhao J. Gai J. Guo N. Xing H. Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90) gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana PLoS ONE 2013 8 e69810 10.1371/journal.pone.0069810 23936107 

  63. 63. Zhao Q. Zhou L. Liu J. Cao Z. Du X. Huang F. Pan G. Cheng F. Involvement of CAT in the detoxification of HT-induced ROS burst in rice anther and its relation to pollen fertility Plant Cell Rep. 2018 37 741 757 10.1007/s00299-018-2264-y 29464319 

  64. 64. Yin Y. Qin K. Song X. Zhang Q. Zhou Y. Xia X. Yu J. BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato Plant Cell Physiol. 2018 59 2239 2254 10.1093/pcp/pcy146 30107607 

  65. 65. Mittler R. ROS are good Trends Plant Sci. 2017 22 11 19 10.1016/j.tplants.2016.08.002 27666517 

  66. 66. Saleh A.A. Abdel-Kader D.Z. El Elish A.M. Role of heat shock and salicylic acid in antioxidant homeostasis in mungbean ( Vigna radiata L.) plant subjected to heat stress Am. J. Plant Physiol. 2007 2 344 355 10.3923/ajpp.2007.344.355 

  67. 67. Alayafi A.A.M. Exogenous ascorbic acid induces systemic heat stress tolerance in tomato seedlings: Transcriptional regulation mechanism Environ. Sci. Pollut. Res. Int. 2020 27 19186 19199 10.1007/s11356-019-06195-7 31448379 

  68. 68. Wang X. Cai J. Liu F. Dai T. Cao W. Wollenweber B. Jiang D. Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings Plant Physiol. Biochem. 2014 74 185 192 10.1016/j.plaphy.2013.11.014 24308988 

  69. 69. Hu X.J. Chen D. Lynne Mclntyre C. Fernanda Dreccer M. Zhang Z.B. Drenth J. Kalaipandian S. Chang H. Xue G.P. Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway Plant Cell Environ. 2018 41 79 98 10.1111/pce.12957 28370204 

  70. 70. Driedonks N. Xu J. Peters J. Park S. Rieu I. Multi-Level Interactions Between Heat Shock Factors, Heat Shock Proteins, and the Redox System Regulate Acclimation to Heat Front. Plant Sci. 2015 6 999 10.3389/fpls.2015.00999 26635827 

  71. 71. Wang J. Yuan B. Huang B. Differential Heat-Induced Changes in Phenolic Acids Associated with Genotypic Variations in Heat Tolerance for Hard Fescue Crop Sci. 2019 59 667 674 10.2135/cropsci2018.01.0063 

  72. 72. Commisso M. Toffali K. Strazzer P. Stocchero M. Ceoldo S. Baldan B. Levi M. Guzzo F. Impact of phenylpropanoid compounds on heat stress tolerance in carrot cell cultures Front. Plant Sci. 2016 7 1439 10.3389/fpls.2016.01439 27713760 

  73. 73. Khan M.I.R. Fatma M. Per T.S. Anjum N.A. Khan N.A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants Front. Plant Sci. 2015 6 462 10.3389/fpls.2015.00462 26175738 

  74. 74. Vlot A.C. Dempsey D.M.A. Klessig D.F. Salicylic acid, a multifaceted hormone to combat disease Annu. Rev. Phytopathol. 2009 47 177 206 10.1146/annurev.phyto.050908.135202 19400653 

  75. 75. Miura K. Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid Front. Plant Sci. 2014 5 4 10.3389/fpls.2014.00004 24478784 

  76. 76. Jahan M.S. Guo S. Sun J. Shu S. Wang Y. El-Yazied A.A. Alabdallah N.M. Hikal M. Mohamed M.H.M. Ibrahim M.F.M. Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress Plant Physiol. Biochem. 2021 167 309 320 10.1016/j.plaphy.2021.08.002 34392044 

  77. 77. Hoagland D.R. Arnon D.I. The water-culture method for growing plants without soil Circ. Calif. Agric. Exp. Stn. 1950 347 32 

  78. 78. Scalschi L. Llorens E. González-Hernández A.I. Valcárcel M. Gamir J. García-Agustín P. Vicedo B. Camañes G. 1-Methyltryptophan Modifies Apoplast Content in Tomato Plants Improving Resistance Against Pseudomonas syringae Front. Microbiol. 2018 31 2056 10.3389/fmicb.2018.02056 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로