$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effect of Polydeoxyribonucleotide (PDRN) Treatment on Corneal Wound Healing in Zebrafish ( Danio rerio ) 원문보기

International journal of molecular sciences, v.23 no.21, 2022년, pp.13525 -   

Edirisinghe, Shan Lakmal (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea) ,  Nikapitiya, Chamilani (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea) ,  Dananjaya, S. H. S. (Zerone Bio Inc., 322-1 Sanhak Building, Dankook University, 119 Dandae-ro, Cheonan-si 31116, Korea) ,  Park, Jungho (Zerone Bio Inc., 322-1 Sanhak Building, Dankook University, 119 Dandae-ro, Cheonan-si 31116, Korea) ,  Kim, Dukgyu (Zerone Bio Inc., 322-1 Sanhak Building, Dankook University, 119 Dandae-ro, Cheonan-si 31116, Korea) ,  Choi, Dongrack (Zerone Bio Inc., 322-1 Sanhak Building, Dankook University, 119 Dandae-ro, Cheonan-si 31116, Korea) ,  De Zoysa, Mahanama (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea)

Abstract AI-Helper 아이콘AI-Helper

This study aimed to develop a corneal epithelial injury model in zebrafish (Danio rerio) and investigate the effectiveness of polydeoxyribonucleotide (PDRN) treatment on in vivo corneal epithelial regeneration and wound healing. Chemical injury to zebrafish cornea was produced by placing a small cot...

주제어

참고문헌 (70)

  1. 1. Böhnke M. Masters B.R. Confocal microscopy of the cornea Prog. Retin. Eye Res. 1999 18 553 628 10.1016/S1350-9462(98)00028-7 10438152 

  2. 2. Jester J.V. Moller-Pedersen T. Huang J. Sax C.M. Kays W.T. Cavangh H.D. Petroll W.M. Piatigorsky J. The cellular basis of corneal transparency: Evidence for “corneal crystallins” J. Cell Sci. 1999 112 613 622 10.1242/jcs.112.5.613 9973596 

  3. 3. Sridhar M.S. Anatomy of cornea and ocular surface Indian J. Ophthalmol. 2018 66 190 194 10.4103/ijo.IJO_646_17 29380756 

  4. 4. DelMonte D.W. Kim T. Anatomy and physiology of the cornea J. Cataract. Refract. Surg. 2011 37 588 598 10.1016/j.jcrs.2010.12.037 21333881 

  5. 5. Pineda R. World Corneal Blindness Foundations of Corneal Disease Colby K. Dana R. Springer Cham, Switzerland 2020 10.1007/978-3-030-25335-6_25 

  6. 6. Ljubimov A.V. Saghizadeh M. Progress in corneal wound healing HHS Public Access Prog. Retin. Eye Res. 2015 49 17 45 10.1016/j.preteyeres.2015.07.002.Progress 26197361 

  7. 7. Chaurasia S.S. Kaur H. de Medeiros F.W. Smith S.D. Wilson S.E. Dynamics of the expression of intermediate filaments vimentin and desmin during myofibroblast differentiation after corneal injury Exp. Eye Res. 2009 89 133 139 10.1016/j.exer.2009.02.022 19285070 

  8. 8. Wilson S.E. Mohan R.R. Mohan R.R. Ambro R. Hong J. Lee J. The corneal wound healing response-cytokine mediated interaction of epithelium, stroma and, inflammatory cells Prog. Retin. Eye Res. 2001 20 625 637 11470453 

  9. 9. Shoham A. Hadziahmetovic M. Dunaief J.L. Mydlarski M.B. Schipper H.M. Oxidative stress in diseases of the human cornea Free Radic. Biol. Med. 2008 45 1047 1055 10.1016/j.freeradbiomed.2008.07.021 18718524 

  10. 10. Bukowiecki A. Hos D. Cursiefen C. Eming S.A. Wound-healing studies in cornea and skin: Parallels, differences and opportunities Int. J. Mol. Sci. 2017 18 1257 10.3390/ijms18061257 

  11. 11. Cintron C. Covington H. Kublin C.L. Morphogenesis of rabbit corneal stroma Investig. Ophthalmol. Vis. Sci. 1983 24 543 556 10.1017/S1431927600002567 6841000 

  12. 12. Mckenna C.C. Lwigale P.Y. Innervation of the mouse cornea during development Investig. Ophthalmol. Vis. Sci. 2011 52 30 35 10.1167/iovs.10-5902 20811061 

  13. 13. Schumann S. Dietrich E. Kruse C. Grisanti S. Ranjbar M. Establishment of a robust and simple corneal organ culture model to monitor wound healing J. Clin. Med. 2021 10 3486 10.3390/jcm10163486 34441782 

  14. 14. Glenwood G. Barbara W. MaryJane R. Stacy P. Damian G. Corneal Wound Healing Model in New Zealand White Rabbits for Evaluating Persistent Corneal Epithelial Defects Investig. Ophthalmol. Vis. Sci. 2013 54 3903 

  15. 15. Pal-Ghosh S. Pajoohesh-Ganji A. Brown M. Stepp M.A. A mouse model for the study of recurrent corneal epithelial erosions: α9β1 integrin implicated in progression of the disease Investig. Ophthalmol. Vis. Sci. 2004 45 1775 1788 10.1167/iovs.03-1194 15161840 

  16. 16. Choi H. Phillips C. Oh J.Y. Stock E.M. Kim D.K. Won J.K. Fulcher S. Comprehensive Modeling of Corneal Alkali Injury in the Rat Eye Curr. Eye Res. 2017 42 1348 1357 10.1080/02713683.2017.1317817 28636415 

  17. 17. Conners M.S. Urbano F. Vafeas C. Stoltz R.A. Dunn M.W. Schwartzman M.L. Alkali burn-induced time-dependent synthesis of 12-HETE enantiomers in rabbit corneal epithelium Investig. Ophthalmol. Vis. Sci. 1996 37 2504 8933767 

  18. 18. Bian F. Xiao Y. Zaheer M. Volpe E.A. Pflugfelder S.C. Li D.Q. De Paiva C.S. Inhibition of NLRP3 inflammasome pathway by butyrate improves corneal wound healing in corneal alkali burn Int. J. Mol. Sci. 2017 18 562 10.3390/ijms18030562 

  19. 19. Anderson C. Zhou Q. Wang S. An Alkali-burn injury model of corneal neovascularization in the mouse J. Vis. Exp. 2014 86 e51159 10.3791/51159 

  20. 20. Barabino S. Dana M.R. Animal models of dry eye: A critical assessment of opportunities and limitations Investig. Ophthalmol. Vis. Sci. 2004 45 1641 1646 10.1167/iovs.03-1055 15161821 

  21. 21. Evangelho K. Mastronardi C.A. De-La-Torre A. Experimental models of glaucoma: A powerful translational tool for the future development of new therapies for glaucoma in humans—A review of the literature Medicina 2019 55 280 10.3390/medicina55060280 

  22. 22. Sun Z. Amsterdam A. Pazour G.J. Cole D.G. Miller M.S. Hopkins N. A genetic screen in zebrafish indentifies cilia genes as a principal cause of cystic kidney Development 2004 131 4085 4093 10.1242/dev.01240 15269167 

  23. 23. Kleinjan D.A. Bancewicz R.M. Gautier P. Dahm R. Schonthaler H.B. Damante G. Seawright A. Hever A.M. Yeyati P.L. Van Heyningen V. Subfunctionalization of duplicated zebrafish pax6 genes by cis-regulatory divergence PLoS Genet. 2008 4 e29 10.1371/journal.pgen.0040029 18282108 

  24. 24. Bibliowicz J. Tittle R.K. Gross J.M. Toward a better understanding of human eye disease: Insights from the zebrafish, Danio rerio Prog. Mol. Biol. Transl. Sci. 2011 100 287 330 10.1016/B978-0-12-384878-9.00007-8 21377629 

  25. 25. Bohnsack B.L. Kasprick D.S. Kish P.E. Goldman D. Kahana A. A zebrafish model of Axenfeld-Rieger syndrome reveals that pitx2 regulation by Retinoic Acid is essential for ocular and craniofacial development Investig. Ophthalmol. Vis. Sci. 2012 53 7 22 10.1167/iovs.11-8494 22125274 

  26. 26. Gupta V. Kawahara G. Gundry S.R. Chen A.T. Lencer W.I. Zhou Y. Zon L.I. Kunkel L.M. Beggs A.H. The zebrafish dag1 mutant: A novel genetic model for dystroglycanopathies Hum. Mol. Genet. 2011 20 1712 1725 10.1093/hmg/ddr047 21296866 

  27. 27. Zhao X.C. Yee R.W. Norcom E. Burgess H. Avanesov A.S. Barrish J.P. Malicki J. The zebrafish cornea: Structure and development Investig. Ophthalmol. Vis. Sci. 2006 47 4341 4348 10.1167/iovs.05-1611 17003424 

  28. 28. Ikkala K. Stratoulias V. Michon F. Unilateral Zebrafish Corneal Injury Induces Bilateral Cell Plasticity Supporting Wound Closure Sci. Rep. 2022 12 1 20 10.1038/s41598-021-04086-x 34992227 

  29. 29. Oliver V.F. Van Bysterveldt K.A. Cadzow M. Steger B. Romano V. Markie D. Hewitt A.W. MacKey D.A. Willoughby C.E. Sherwin T. A COL17A1 Splice-Altering Mutation Is Prevalent in Inherited Recurrent Corneal Erosions Ophthalmology 2016 123 709 722 10.1016/j.ophtha.2015.12.008 26786512 

  30. 30. Colin S.P. Colin H.B. The fish cornea: Adaptation for different aquatic environment Sensory Biology of Jawed Fishes-New Insights Kapoor B.G. Hara T.J. Science Publishers Inc. New York, NY, USA 2001 57 

  31. 31. Heur M. Jiao S. Schindler S. Crump J.G. Regenerative potential of the zebrafish corneal endothelium Exp. Eye Res. 2013 106 1 4 10.1016/j.exer.2012.10.009 23108006 

  32. 32. Julia R. Anderson A. Pascal L. Corneal injury and repair in the zebrafish Exp. Biol. 2015 29 1 10 10.1096/fasebj.29.1_suppliment.876.10 

  33. 33. Choi J.-S. Joo C.-K. Polydeoxyribonucleotide (PDRN) inhibits corneal inflammation in experimental rat keratoconjunctivitis sicca model Investig. Ophthalmol. Vis. Sci. 2016 57 5730 

  34. 34. Lazzarotto M. Tomasello E.M. Caporossi A. Clinical Evaluation of Corneal Epithelialization after Photorefractive Keratectomy in Patients Treated with Polydeoxyribonucleotide (PDRN) Eye Drops: A Randomized, Double-blind, Placebo-controlled Trial Eur. J. Ophthalmol. 2004 14 284 289 10.1177/112067210401400402 15309972 

  35. 35. Squadrito F. Bitto A. Irrera N. Pizzino G. Pallio G. Minutoli L. Altavilla D. Pharmacological Activity and Clinical Use of PDRN Front. Pharmacol. 2017 8 224 10.3389/fphar.2017.00224 28491036 

  36. 36. Richardson R. Tracey-White D. Webster A. Moosajee M. The zebrafish eye-a paradigm for investigating human ocular genetics Eye 2017 31 68 86 10.1038/eye.2016.198 27612182 

  37. 37. Fadool J.M. Dowling J.E. Zebrafish: A model system for the study of eye genetics Prog. Retin. Eye Res. 2008 27 89 110 10.1016/j.preteyeres.2007.08.002 17962065 

  38. 38. Morris A.C. The genetics of ocular disorders: Insights from the zebrafish Birth Defects Res. Part C-Embryo Today Rev. 2011 93 215 228 10.1002/bdrc.20211 

  39. 39. Link B.A. Collery R.F. Zebrafish Models of Retinal Disease Annu. Rev. Vis. Sci. 2015 1 125 153 10.1146/annurev-vision-082114-035717 28532376 

  40. 40. Kujawski S. Crespo C. Luz M. Yuan M. Winkler S. Knust E. Loss of Crb2b-lf leads to anterior segment defects in old zebrafish Biol. Open 2020 9 1 14 10.1242/bio.047555 

  41. 41. Kwon T.R. Han S.W. Kim J.H. Lee B.C. Kim J.M. Hong J.Y. Kim B.J. Polydeoxyribonucleotides Improve Diabetic Wound Healing in Mouse Animal Model for Experimental Validation Ann. Dermatol. 2019 31 403 413 10.5021/ad.2019.31.4.403 33911618 

  42. 42. Joshua E.J. Barbara E.C. Corned Staining After Instillation of Topical Anesthetic (SSII) Investig. Ophthalmol. Vis. Sci. 1988 29 1096 1099 2458327 

  43. 43. Ellina A.M. Peter W.J.M. Adrian C.W. Vitaliy V.K. On the Barrier Properties of the Cornea: A Microscopy Study of the Penetration of Fluorescently Labeled Nanoparticles, Polymers, and Sodium Fluorescein Mol. Pharm. 2014 11 3556 3564 10.1021/mp500332m 25165886 

  44. 44. Caffery B.E. Josephson J.E. Corneal staining after sequential instillations of fluorescein over 30 days Optom. Vis. Sci. 1991 68 467 469 10.1097/00006324-199106000-00011 1716353 

  45. 45. Kasus J.A. Noor M.S. Griffith G.L. Hinsley H. Mathias L. Pereira H.A. A multifunctional peptide based on the neutrophil immune defense molecule, CAP37, has antibacterial and wound-healing properties J. Leukoc. Biol. 2015 97 341 350 10.1189/jlb.3A0214-104RR 25412625 

  46. 46. Okada Y. Sumioka T. Ichikawa K. Sano H. Nambu A. Kobayashi K. Uchida K. Suzuki Y. Tominaga M. Reinach P.S. Sensory nerve supports epithelial stem cell function in healing of corneal epithelium in mice: The role of trigeminal nerve transient receptor potential vanilloid 4 Lab. Investig. 2019 99 210 230 10.1038/s41374-018-0118-4 30413814 

  47. 47. Hertsenberg A.J. Funderburgh J.L. Stem Cells in the Cornea Prog. Mol. Biol. Transl. Sci. 2015 134 25 41 10.1016/bs.pmbts.2015.04.002 26310147 

  48. 48. Puri S. Sun M. Mutoji K.N. Gesteira T.F. Coulson-Thomas V.J. Epithelial Cell Migration and Proliferation Patterns During Initial Wound Closure in Normal Mice and an Experimental Model of Limbal Stem Cell Deficiency Investig. Ophthalmol. Vis. Sci. 2020 61 1 15 10.1167/iovs.61.10.27 

  49. 49. Wijnholds J. “Basal Cell Migration” in Regeneration of the Corneal Wound-Bed Stem Cell Rep. 2019 12 3 5 10.1016/j.stemcr.2018.12.009 

  50. 50. Gipson I.K. Goblet cells of the conjunctiva: A review of recent findings Prog. Retin. Eye Res. 2016 54 49 63 10.1016/j.preteyeres.2016.04.005 27091323 

  51. 51. Thellung S. Florio T. Maragliano A. Cattarini G. Schettini G. Polydeoxyribonucleotides enhance the proliferation of human skin fibroblasts: Involvement of A2 purinergic receptor subtypes Life Sci. 1999 64 1661 1674 10.1016/S0024-3205(99)00104-6 10328526 

  52. 52. Guizzardi S. Galli C. Govoni P. Boratto R. Cattarini G. Martini D. Belletti S. Scandroglio R. Polydeoxyribonucleotide (PDRN) promotes human osteoblast proliferation: A new proposal for bone tissue repair Life Sci. 2003 73 1973 1983 10.1016/S0024-3205(03)00547-2 12899922 

  53. 53. Yochai S. Jacob P. Victoria D. Joseph F.P. Abraham S. Increased Expression of Inflammatory Cytokines and Matrix Metalloproteinases in Pseudophakic Corneal Edema Investig. Ophthalmol. Vis. Sci. 2005 46 1940 1947 10.1167/iovs.04-1203 15914607 

  54. 54. Julie T.D. Astrid L.G. Ulpu S.K. Gillian M. Peng T.K. Human Corneal Epithelial Cells Require MMP-1 for HGF-Mediated Migration on Collagen I Investig. Ophthalmol. Vis. Sci. 2003 44 1048 1055 10.1167/iovs.02-0442 12601028 

  55. 55. Blanco-Mezquita J.T. Hutcheon A.E. Zieske J.D. Role of Thrombospondin-1 in Repair of Penetrating Corneal Wounds Investig. Ophthalmol. Vis. Sci. 2013 54 6262 6268 10.1167/iovs.13-11710 23963165 

  56. 56. Mauris J. Woodward A.M. Cao Z. Panjwani N. Argüeso P. Molecular basis for MMP9 induction and disruption of epithelial cell-cell contacts by galectin-3 J. Cell Sci. 2014 127 Pt 14 3141 3148 10.1242/jcs.148510 24829150 

  57. 57. Fini M.E. Cook J.R. Mohan R. Proteolytic mechanisms in corneal ulceration and repair Arch. Dermatol. Res. 1998 290 S12 S23 10.1007/PL00007449 9710379 

  58. 58. Ottino P. Taheri F. Bazan H.E.P. Platelet-activating factor induces the gene expression of TIMP-1, -2, and PAI-1: Imbalance between the gene expression of MMP-9 and TIMP-1 and -2 Exp. Eye Res. 2002 74 393 402 10.1006/exer.2001.1135 12014920 

  59. 59. Gordon G.M. Austin J.S. Sklar A.L. Feuer W.J. Lagier A.J. Fini M.E. Comprehensive gene expression profiling and functional analysis of matrix metalloproteinases and TIMPs, and identification of ADAM-10 gene expression, in a corneal model of epithelial resurfacing J. Cell. Physiol. 2011 226 1461 1470 10.1002/jcp.22306 20625997 

  60. 60. Ye H.Q. Maeda M. Yu F.S.X. Azar D.T. Differential expression of MT1-MMP (MMP-14) and collagenase III (MMP-13) genes in normal and wounded rat corneas Investig. Ophthalmol. Vis. Sci. 2000 41 2894 2899 10967042 

  61. 61. Haber M. Cao Z. Panjwani N. Bedenice D. Li W.W. Provost P.J. Effects of growth factors (EGF, PDGF-BB and ββ1) on cultured equine epithelial cells and keratocytes: Implications for wound healing Vet. Ophthalmol. 2003 6 211 217 10.1046/j.1463-5224.2003.00296.x 12950652 

  62. 62. Jens L.A. Thomas L. Niels E. Keratocyte migration and peptide growth factors: The effect of PDGF, bFGF, EGF, IGF-I, aFGF and TGF-ß on human keratocyte migration in a collagen gel Curr. Eye Res. 1997 16 605 613 10.1076/ceyr.16.6.605.5081 9192171 

  63. 63. Koroma B.M. Yang J.M. Sundin O.H. The Pax-6 homeobox gene is expressed throughout the corneal and conjunctival epithelia Investig. Ophthalmol. Vis. Sci. 1997 38 108 120 9008636 

  64. 64. Dorà N. Ou J. Kucerova R. Parisi I. West J.D. Collinson J.M. PAX6 dosage effects on corneal development, growth, and wound healing Dev. Dyn. 2008 237 1295 1306 10.1002/dvdy.21528 18386822 

  65. 65. Davis J. Piatigorsky J. Overexpression of Pax6 in mouse cornea directly alters corneal epithelial cells: Changes in immune function, vascularization, and differentiation Investig. Ophthalmol. Vis. Sci. 2011 52 4158 4168 10.1167/iovs.10-6726 21447684 

  66. 66. Swamynathan S.K. Katz J.P. Kaestner K.H. Ashery-Padan R. Crawford M.A. Piatigorsky J. Conditional Deletion of the Mouse Klf4 Gene Results in Corneal Epithelial Fragility, Stromal Edema, and Loss of Conjunctival Goblet Cells Mol. Cell. Biol. 2007 27 182 194 10.1128/MCB.00846-06 17060454 

  67. 67. Swamynathan S.K. Ocular surface development and gene expression J. Ophthalmol. 2013 2013 103947 10.1155/2013/103947 23533700 

  68. 68. Peterson C.W.M. Carter R.T. Bentley E. Murphy C.J. Chandler H.L. Heat-shock protein expression in canine corneal wound healing Vet. Ophthalmol. 2016 19 262 266 10.1111/vop.12302 26302381 

  69. 69. Edirisinghe S.L. Rajapaksha D.C. Nikapitiya C. Oh C. Lee K.A. Kang D.H. De Zoysa M. Spirulina maxima derived marine pectin promotes the in vitro and in vivo regeneration and wound healing in zebrafish Fish Shellfish. Immunol. 2020 107 414 425 10.1016/j.fsi.2020.10.008 33038507 

  70. 70. Livak K.J. Schmittgen T.D. Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) method Methods 2001 25 402 408 10.1006/meth.2001.1262 11846609 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내

문의처: helpdesk@kisti.re.kr전화: 080-969-4114

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로