$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Airborne particulate matter (PM10) induces cell invasion through Aryl Hydrocarbon Receptor and Activator Protein 1 (AP-1) pathway deregulation in A549 lung epithelial cells

Molecular biology reports, v.50 no.1, 2023년, pp.107 - 119  

Morales-Bárcenas, Rocío ,  Sánchez-Pérez, Yesennia ,  Santibáñez-Andrade, Miguel ,  Chirino, Yolanda I. ,  Soto-Reyes, Ernesto ,  García-Cuellar, Claudia M.

초록이 없습니다.

참고문헌 (70)

  1. Lancet AJ Cohen 389 1907 2017 10.1016/s0140-6736(17)30505-6 Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L, Liu Y, Martin R, Morawska L, Pope CA 3, Shin H, Straif K, Shaddick G, Thomas M, van Dingenen R, van Donkelaar A, Vos T, Murray CJL, Forouzanfar MH (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389:1907-1918. https://doi.org/10.1016/s0140-6736(17)30505-6 

  2. Lancet Oncol D Loomis 14 1262 2013 10.1016/s1470-2045(13)70487-x Loomis D, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Baan R, Mattock H, Straif K (2013) The carcinogenicity of outdoor air pollution. Lancet Oncol 14:1262-1263. https://doi.org/10.1016/s1470-2045(13)70487-x 

  3. Front Immunol CI Falcon-Rodriguez 7 3 2016 10.3389/fimmu.2016.00003 Falcon-Rodriguez CI, Osornio-Vargas AR, Sada-Ovalle I, Segura-Medina P (2016) Aeroparticles, Composition, and Lung Diseases. Front Immunol 7:3. https://doi.org/10.3389/fimmu.2016.00003 

  4. Annu Rev Public Health DW Dockery 15 107 1994 10.1146/annurev.pu.15.050194.000543 Dockery DW, Pope CA 3rd (1994) Acute respiratory effects of particulate air pollution. Annu Rev Public Health 15:107-132. https://doi.org/10.1146/annurev.pu.15.050194.000543 

  5. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev A Valavanidis 26 339 2008 10.1080/10590500802494538 Valavanidis A, Fiotakis K, Vlachogianni T (2008) Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 26:339-362. https://doi.org/10.1080/10590500802494538 

  6. Sci Total Environ RM Harrison 249 85 2000 10.1016/s0048-9697(99)00513-6 Harrison RM, Yin J (2000) Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci Total Environ 249:85-101. https://doi.org/10.1016/s0048-9697(99)00513-6 

  7. Toxicol Lett YI Chirino 193 209 2010 10.1016/j.toxlet.2010.01.009 Chirino YI, Sanchez-Perez Y, Osornio-Vargas AR, Morales-Barcenas R, Gutierrez-Ruiz MC, Segura-Garcia Y, Rosas I, Pedraza-Chaverri J, Garcia-Cuellar CM (2010) PM(10) impairs the antioxidant defense system and exacerbates oxidative stress driven cell death. Toxicol Lett 193:209-216. https://doi.org/10.1016/j.toxlet.2010.01.009 

  8. 10.1016/j.fuproc.2010.05.019 Callén MS, de la Cruz MT, López JM, Mastral AM (2011) PAH in airborne particulate matter.: Carcinogenic character of PM10 samples and assessment of the energy generation impact. Fuel Processing Technology 92:176-182. https://doi.org/10.1016/j.fuproc.2010.05.019 

  9. 10.1007/s00204-012-0818-2 Esser C (2012) Biology and function of the aryl hydrocarbon receptor: report of an international and interdisciplinary conference. Arch Toxicol 86:1323-9. https://doi.org/10.1007/s00204-012-0818-2 

  10. Toxicol Sci B Moorthy 145 5 2015 10.1093/toxsci/kfv040 Moorthy B, Chu C, Carlin DJ (2015) Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicol Sci 145:5-15. https://doi.org/10.1093/toxsci/kfv040 

  11. Annu Rev Pharmacol Toxicol MS Denison 43 309 2003 10.1146/annurev.pharmtox.43.100901.135828 Denison MS, Nagy SR (2003) Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43:309-334. https://doi.org/10.1146/annurev.pharmtox.43.100901.135828 

  12. Carcinogenesis C Dietrich 31 1319 2010 10.1093/carcin/bgq028 Dietrich C, Kaina B (2010) The aryl hydrocarbon receptor (AhR) in the regulation of cell-cell contact and tumor growth. Carcinogenesis 31:1319-1328. https://doi.org/10.1093/carcin/bgq028 

  13. Anticancer Res JJ Tsay 33 1247 2013 Tsay JJ, Tchou-Wong KM, Greenberg AK, Pass H, Rom WN (2013) Aryl hydrocarbon receptor and lung cancer. Anticancer Res 33:1247-1256 

  14. Biochem Pharmacol A Puga 77 713 2009 10.1016/j.bcp.2008.08.031 Puga A, Ma C, Marlowe JL (2009) The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways. Biochem Pharmacol 77:713-722. https://doi.org/10.1016/j.bcp.2008.08.031 

  15. Biol Chem JM Hillegass 387 1159 2006 10.1515/bc.2006.144 Hillegass JM, Murphy KA, Villano CM, White LA (2006) The impact of aryl hydrocarbon receptor signaling on matrix metabolism: implications for development and disease. Biol Chem 387:1159-1173. https://doi.org/10.1515/bc.2006.144 

  16. Environ Int O Idowu 123 543 2019 10.1016/j.envint.2018.12.051 Idowu O, Semple KT, Ramadass K, O’Connor W, Hansbro P, Thavamani P (2019) Beyond the obvious: Environmental health implications of polar polycyclic aromatic hydrocarbons. Environ Int 123:543-557. https://doi.org/10.1016/j.envint.2018.12.051 

  17. Toxicol Appl Pharmacol A Hoffer 141 238 1996 10.1006/taap.1996.0280 Hoffer A, Chang CY, Puga A (1996) Dioxin induces transcription of fos and jun genes by Ah receptor-dependent and -independent pathways. Toxicol Appl Pharmacol 141:238-247. https://doi.org/10.1006/taap.1996.0280 

  18. Nat Cell Biol E Shaulian 4 E131 2002 10.1038/ncb0502-e131 Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131-E136. https://doi.org/10.1038/ncb0502-e131 

  19. DNA Cell Biol A Puga 11 269 1992 10.1089/dna.1992.11.269 Puga A, Nebert DW, Carrier F (1992) Dioxin induces expression of c-fos and c-jun proto-oncogenes and a large increase in transcription factor AP-1. DNA Cell Biol 11:269-281. https://doi.org/10.1089/dna.1992.11.269 

  20. Toxicol Appl Pharmacol CM Villano 210 212 2006 10.1016/j.taap.2005.05.001 Villano CM, Murphy KA, Akintobi A, White LA (2006) 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces matrix metalloproteinase (MMP) expression and invasion in A2058 melanoma cells. Toxicol Appl Pharmacol 210:212-224. https://doi.org/10.1016/j.taap.2005.05.001 

  21. Toxicol Sci L Sparfel 114 247 2010 10.1093/toxsci/kfq007 Sparfel L, Pinel-Marie ML, Boize M, Koscielny S, Desmots S, Pery A, Fardel O (2010) Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci 114:247-259. https://doi.org/10.1093/toxsci/kfq007 

  22. Environ Pollut ME Salcido-Neyoy 203 175 2015 10.1016/j.envpol.2015.03.051 Salcido-Neyoy ME, Sánchez-Pérez Y, Osornio-Vargas AR, Gonsebatt ME, Meléndez-Zajgla J, Morales-Bárcenas R, Petrosyan P, Molina-Servin ED, Vega E, Manzano-León N, García-Cuellar CM (2015) Induction of c-Jun by air particulate matter (PM10) of Mexico city: Participation of polycyclic aromatic hydrocarbons. Environ Pollut 203:175-182. https://doi.org/10.1016/j.envpol.2015.03.051 

  23. Toxicol Lett R Morales-Bárcenas 237 167 2015 10.1016/j.toxlet.2015.06.001 Morales-Bárcenas R, Chirino YI, Sánchez-Pérez Y, Osornio-Vargas ÁR, Melendez-Zajgla J, Rosas I, García-Cuellar CM (2015) Particulate matter (PM10) induces metalloprotease activity and invasion in airway epithelial cells. Toxicol Lett 237:167-173. https://doi.org/10.1016/j.toxlet.2015.06.001 

  24. Environ Health Perspect E Alfaro-Moreno 110 715 2002 10.1289/ehp.02110715 Alfaro-Moreno E, Martínez L, García-Cuellar C, Bonner JC, Murray JC, Rosas I, Rosales SP, Osornio-Vargas AR (2002) Biologic effects induced in vitro by PM10 from three different zones of Mexico City. Environ Health Perspect 110:715-720. https://doi.org/10.1289/ehp.02110715 

  25. Cancer Lett Y Sánchez-Pérez 278 192 2009 10.1016/j.canlet.2009.01.010 Sánchez-Pérez Y, Chirino YI, Osornio-Vargas ÁR, Morales-Bárcenas R, Gutiérrez-Ruíz C, Vázquez-López I, García-Cuellar CM (2009) DNA damage response of A549 cells treated with particulate matter (PM10) of urban air pollutants. Cancer Lett 278:192-200. https://doi.org/10.1016/j.canlet.2009.01.010 

  26. Data Brief YI Chirino 4 353 2015 10.1016/j.dib.2015.06.017 Chirino YI, Sanchez-Perez Y, Osornio-Vargas AR, Rosas I, Garcia-Cuellar CM (2015) Sampling and composition of airborne particulate matter (PM10) from two locations of Mexico City. Data Brief 4:353-356. https://doi.org/10.1016/j.dib.2015.06.017 

  27. Exp Cell Res KA Foster 243 359 1998 10.1006/excr.1998.4172 Foster KA, Oster CG, Mayer MM, Avery ML, Audus KL (1998) Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res 243:359-366. https://doi.org/10.1006/excr.1998.4172 

  28. Toxicol In Vitro M Gualtieri 24 29 2010 10.1016/j.tiv.2009.09.013 Gualtieri M, Øvrevik J, Holme JA, Perrone MG, Bolzacchini E, Schwarze PE, Camatini M (2010) Differences in cytotoxicity versus pro-inflammatory potency of different PM fractions in human epithelial lung cells. Toxicol In Vitro 24:29-39. https://doi.org/10.1016/j.tiv.2009.09.013 

  29. Anal Biochem PK Smith 150 76 1985 10.1016/0003-2697(85)90442-7 Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76-85. https://doi.org/10.1016/0003-2697(85)90442-7 

  30. 10.1016/s0945-053x(97)90026-3 Benbow U, Brinckerhoff CE (1997) The AP-1 site and MMP gene regulation: what is all the fuss about? Matrix Biol 15:519 - 26. https://doi.org/10.1016/s0945-053x(97)90026-3 

  31. J Biol Chem KA Murphy 279 25284 2004 10.1074/jbc.M402168200 Murphy KA, Villano CM, Dorn R, White LA (2004) Interaction between the aryl hydrocarbon receptor and retinoic acid pathways increases matrix metalloproteinase-1 expression in keratinocytes. J Biol Chem 279:25284-25293. https://doi.org/10.1074/jbc.M402168200 

  32. Sci Rep E Roztocil 10 8477 2020 10.1038/s41598-020-65414-1 Roztocil E, Hammond CL, Gonzalez MO, Feldon SE, Woeller CF (2020) The aryl hydrocarbon receptor pathway controls matrix metalloproteinase-1 and collagen levels in human orbital fibroblasts. Sci Rep 10:8477. https://doi.org/10.1038/s41598-020-65414-1 

  33. Oncogene D Lallemand 14 819 1997 10.1038/sj.onc.1200901 Lallemand D, Spyrou G, Yaniv M, Pfarr CM (1997) Variations in Jun and Fos protein expression and AP-1 activity in cycling, resting and stimulated fibroblasts. Oncogene 14:819-830. https://doi.org/10.1038/sj.onc.1200901 

  34. Oncogene A Sundqvist 39 4436 2020 10.1038/s41388-020-1299-z Sundqvist A, Vasilaki E, Voytyuk O, Bai Y, Morikawa M, Moustakas A, Miyazono K, Heldin CH, Ten Dijke P, van Dam H (2020) TGFbeta and EGF signaling orchestrates the AP-1- and p63 transcriptional regulation of breast cancer invasiveness. Oncogene 39:4436-4449. https://doi.org/10.1038/s41388-020-1299-z 

  35. Nat Commun CD Yao 11 5079 2020 10.1038/s41467-020-18762-5 Yao CD, Haensel D, Gaddam S, Patel T, Atwood SX, Sarin KY, Whitson RJ, McKellar S, Shankar G, Aasi S, Rieger K, Oro AE (2020) AP-1 and TGFss cooperativity drives non-canonical Hedgehog signaling in resistant basal cell carcinoma. Nat Commun 11:5079. https://doi.org/10.1038/s41467-020-18762-5 

  36. J Biol Chem Y Qiao 291 5068 2016 10.1074/jbc.M115.702571 Qiao Y, He H, Jonsson P, Sinha I, Zhao C, Dahlman-Wright K (2016) AP-1 Is a Key Regulator of Proinflammatory Cytokine TNFalpha-mediated Triple-negative Breast Cancer Progression. J Biol Chem 291:5068-5079. https://doi.org/10.1074/jbc.M115.702571 

  37. Environ Res E Alfaro-Moreno 109 528 2009 10.1016/j.envres.2009.02.010 Alfaro-Moreno E, Torres V, Miranda J, Martínez L, García-Cuellar C, Nawrot TS, Vanaudenaerde B, Hoet P, Ramírez-López P, Rosas I, Nemery B, Osornio-Vargas AR (2009) Induction of IL-6 and inhibition of IL-8 secretion in the human airway cell line Calu-3 by urban particulate matter collected with a modified method of PM sampling. Environ Res 109:528-535. https://doi.org/10.1016/j.envres.2009.02.010 

  38. Tuberc Respir Dis (Seoul) SY Kyung 73 84 2012 10.4046/trd.2012.73.2.84 Kyung SY, Yoon JY, Kim YJ, Lee SP, Park JW, Jeong SH (2012) Asian Dust Particles Induce TGF-β(1) via Reactive Oxygen Species in Bronchial Epithelial Cells. Tuberc Respir Dis (Seoul) 73:84-92. https://doi.org/10.4046/trd.2012.73.2.84 

  39. Cell Physiol Biochem F Tong 46 1493 2018 10.1159/000489192 Tong F, Zhang H (2018) Pulmonary Exposure to Particulate Matter (PM2.5) Affects the Sensitivity to Myocardial Ischemia/Reperfusion Injury Through Farnesoid-X-Receptor-Induced Autophagy. Cell Physiol Biochem 46:1493-1507. https://doi.org/10.1159/000489192 

  40. J Environ Health Sci Eng Z Atafar 17 433 2019 10.1007/s40201-019-00362-1 Atafar Z, Pourpak Z, Yunesian M, Nicknam MH, Hassanvand MS, Soleimanifar N, Saghafi S, Alizadeh Z, Rezaei S, Ghanbarian M, Ghozikali MG, Osornio-Vargas AR, Naddafi K (2019) Proinflammatory effects of dust storm and thermal inversion particulate matter (PM(10)) on human peripheral blood mononuclear cells (PBMCs) in vitro: a comparative approach and analysis. J Environ Health Sci Eng 17:433-444. https://doi.org/10.1007/s40201-019-00362-1 

  41. Environ Sci Pollut Res Int DH Tsai 26 19697 2019 10.1007/s11356-019-05194-y Tsai DH, Riediker M, Berchet A, Paccaud F, Waeber G, Vollenweider P, Bochud M (2019) Effects of short- and long-term exposures to particulate matter on inflammatory marker levels in the general population. Environ Sci Pollut Res Int 26:19697-19704. https://doi.org/10.1007/s11356-019-05194-y 

  42. Oncogene E Shaulian 20 2390 2001 10.1038/sj.onc.1204383 Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390-2400. https://doi.org/10.1038/sj.onc.1204383 

  43. Oncogene C Weiss 27 2198 2008 10.1038/sj.onc.1210859 Weiss C, Faust D, Schreck I, Ruff A, Farwerck T, Melenberg A, Schneider S, Oesch-Bartlomowicz B, Zatloukalová J, Vondrácek J, Oesch F, Dietrich C (2008) TCDD deregulates contact inhibition in rat liver oval cells via Ah receptor, JunD and cyclin A. Oncogene 27:2198-2207. https://doi.org/10.1038/sj.onc.1210859 

  44. BMC Cell Biol TL Peng 10 27 2009 10.1186/1471-2121-10-27 Peng TL, Chen J, Mao W, Song X, Chen MH (2009) Aryl hydrocarbon receptor pathway activation enhances gastric cancer cell invasiveness likely through a c-Jun-dependent induction of matrix metalloproteinase-9. BMC Cell Biol 10:27. https://doi.org/10.1186/1471-2121-10-27 

  45. J Cell Physiol P Adiseshaiah 216 405 2008 10.1002/jcp.21410 Adiseshaiah P, Vaz M, Machireddy N, Kalvakolanu DV, Reddy SP (2008) A Fra-1-dependent, matrix metalloproteinase driven EGFR activation promotes human lung epithelial cell motility and invasion. J Cell Physiol 216:405-412. https://doi.org/10.1002/jcp.21410 

  46. Genes Dev T Deng 7 479 1993 10.1101/gad.7.3.479 Deng T, Karin M (1993) JunB differs from c-Jun in its DNA-binding and dimerization domains, and represses c-Jun by formation of inactive heterodimers. Genes Dev 7:479-490. https://doi.org/10.1101/gad.7.3.479 

  47. Onco Targets Ther G Lin 11 3805 2018 10.2147/OTT.S162700 Lin G, Yu B, Liang Z, Li L, Qu S, Chen K, Zhou L, Lu Q, Sun Y, Zhu X (2018) Silencing of c-jun decreases cell migration, invasion, and EMT in radioresistant human nasopharyngeal carcinoma cell line CNE-2R. Onco Targets Ther 11:3805-3815. https://doi.org/10.2147/OTT.S162700 

  48. 10.3390/cells9112470 Papavassiliou AG, Musti AM (2020) The Multifaceted Output of c-Jun Biological Activity: Focus at the Junction of CD8 T Cell Activation and Exhaustion. Cells 9. https://doi.org/10.3390/cells9112470 

  49. Mol Cell Biol B Grondin 27 2919 2007 10.1128/MCB.00936-06 Grondin B, Lefrancois M, Tremblay M, Saint-Denis M, Haman A, Waga K, Bedard A, Tenen DG, Hoang T (2007) c-Jun homodimers can function as a context-specific coactivator. Mol Cell Biol 27:2919-2933. https://doi.org/10.1128/MCB.00936-06 

  50. Hum Pathol MM Vleugel 37 668 2006 10.1016/j.humpath.2006.01.022 Vleugel MM, Greijer AE, Bos R, van der Wall E, van Diest PJ (2006) c-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer. Hum Pathol 37:668-674. https://doi.org/10.1016/j.humpath.2006.01.022 

  51. 10.1002/(sici)1097-0215(19991022)84:5%3C533::aid-ijc16%E3.0.co;2-j Bamberger AM, Methner C, Lisboa BW, Städtler C, Schulte HM, Löning T and Milde-Langosch K (1999) Expression pattern of the AP-1 family in breast cancer: association of fosB expression with a well-differentiated, receptor-positive tumor phenotype. Int J Cancer 84:533-8. https://doi.org/10.1002/(sici)1097-0215(19991022)84:5%3C533::aid-ijc16%E3.0.co;2-j 

  52. Oncogenesis C Rattanasinchai 6 e345 2017 10.1038/oncsis.2017.44 Rattanasinchai C, Llewellyn BJ, Conrad SE, Gallo KA (2017) MLK3 regulates FRA-1 and MMPs to drive invasion and transendothelial migration in triple-negative breast cancer cells. Oncogenesis 6:e345. https://doi.org/10.1038/oncsis.2017.44 

  53. Oncotarget SAE Ibrahim 9 34259 2018 10.18632/oncotarget.26047 Ibrahim SAE, Abudu A, Johnson E, Aftab N, Conrad S, Fluck M (2018) The role of AP-1 in self-sufficient proliferation and migration of cancer cells and its potential impact on an autocrine/paracrine loop. Oncotarget 9:34259-34278. https://doi.org/10.18632/oncotarget.26047 

  54. Cancer Lett F Cheng 375 274 2016 10.1016/j.canlet.2016.03.010 Cheng F, Su L, Yao C, Liu L, Shen J, Liu C, Chen X, Luo Y, Jiang L, Shan J, Chen J, Zhu W, Shao J, Qian C (2016) SIRT1 promotes epithelial-mesenchymal transition and metastasis in colorectal cancer by regulating Fra-1 expression. Cancer Lett 375:274-283. https://doi.org/10.1016/j.canlet.2016.03.010 

  55. Asian Pac J Cancer Prev A Krishna 19 867 2018 10.22034/apjcp.2018.19.3.867 Krishna A, Bhatt MLB, Singh V, Singh S, Gangwar PK, Singh US, Kumar V, Mehrotra D (2018) Differential Expression of c-fos Proto-Oncogene in Normal Oral Mucosa versus Squamous Cell Carcinoma. Asian Pac J Cancer Prev 19:867-874. https://doi.org/10.22034/apjcp.2018.19.3.867 

  56. 10.1172/jci.insight.124985 Ruiz EJ, Lan L, Diefenbacher ME, Riising EM, Da Costa C, Chakraborty A, Hoeck JD, Spencer-Dene B, Kelly G, David JP, Nye E, Downward J, Behrens A (2021) JunD, not c-Jun, is the AP-1 transcription factor required for Ras-induced lung cancer. JCI Insight 6. https://doi.org/10.1172/jci.insight.124985 

  57. J Toxicol Environ Health A GH Lee 84 836 2021 10.1080/15287394.2021.1944943 Lee GH, Jin SW, Choi JH, Han EH, Hwang YP, Choi CY, Jeong HG (2021) Influence of o,p’-DDT on MUC5AC expression via regulation of NF-κB/AP-1 activation in human lung epithelial cells. J Toxicol Environ Health A 84:836-845. https://doi.org/10.1080/15287394.2021.1944943 

  58. Toxicol Sci CS Tellez 184 67 2021 10.1093/toxsci/kfab101 Tellez CS, Juri DE, Phillips LM, Do K, Thomas CL, Willink R, Dye WW, Wu G, Zhou Y, Irshad H, Kishida S, Kiyono T, Belinsky SA (2021) Comparative Genotoxicity and Mutagenicity of Cigarette, Cigarillo, and Shisha Tobacco Products in Epithelial and Cardiac Cells. Toxicol Sci 184:67-82. https://doi.org/10.1093/toxsci/kfab101 

  59. Toxicol In Vitro HE O’Farrell 75 105204 2021 10.1016/j.tiv.2021.105204 O’Farrell HE, Brown R, Brown Z, Milijevic B, Ristovski ZD, Bowman RV, Fong KM, Vaughan A, Yang IA (2021) E-cigarettes induce toxicity comparable to tobacco cigarettes in airway epithelium from patients with COPD. Toxicol In Vitro 75:105204. https://doi.org/10.1016/j.tiv.2021.105204 

  60. J Toxicol Sci TT Win-Shwe 40 559 2015 10.2131/jts.40.559 Win-Shwe TT, Fujimaki H (2015) Activation of transcription factors in a mouse lung following exposure to environmental chemical and biological agents. J Toxicol Sci 40:559-568. https://doi.org/10.2131/jts.40.559 

  61. Cell J Schutte 59 987 1989 10.1016/0092-8674(89)90755-1 Schutte J, Viallet J, Nau M, Segal S, Fedorko J, Minna J (1989) jun-B inhibits and c-fos stimulates the transforming and trans-activating activities of c-jun. Cell 59:987-997. https://doi.org/10.1016/0092-8674(89)90755-1 

  62. Int J Oncol C Tang 49 1489 2016 10.3892/ijo.2016.3661 Tang C, Jiang Y, Shao W, Shi W, Gao X, Qin W, Jiang T, Wang F, Feng S (2016) Abnormal expression of FOSB correlates with tumor progression and poor survival in patients with gastric cancer. Int J Oncol 49:1489-1496. https://doi.org/10.3892/ijo.2016.3661 

  63. Toxicol Lett YI Chirino 272 29 2017 10.1016/j.toxlet.2017.03.002 Chirino YI, Garcia-Cuellar CM, Garcia-Garcia C, Soto-Reyes E, Osornio-Vargas AR, Herrera LA, Lopez-Saavedra A, Miranda J, Quintana-Belmares R, Perez IR, Sanchez-Perez Y (2017) Airborne particulate matter in vitro exposure induces cytoskeleton remodeling through activation of the ROCK-MYPT1-MLC pathway in A549 epithelial lung cells. Toxicol Lett 272:29-37. https://doi.org/10.1016/j.toxlet.2017.03.002 

  64. 10.3390/ijms222312632 Garcia-Cuellar CM, Santibanez-Andrade M, Chirino YI, Quintana-Belmares R, Morales-Barcenas R, Quezada-Maldonado EM, Sanchez-Perez Y (2021) Particulate Matter (PM10) Promotes Cell Invasion through Epithelial-Mesenchymal Transition (EMT) by TGF-beta Activation in A549 Lung Cells. Int J Mol Sci 22. https://doi.org/10.3390/ijms222312632 

  65. Br J Cancer S Mahner 99 1269 2008 10.1038/sj.bjc.6604650 Mahner S, Baasch C, Schwarz J, Hein S, Wolber L, Janicke F, Milde-Langosch K (2008) C-Fos expression is a molecular predictor of progression and survival in epithelial ovarian carcinoma. Br J Cancer 99:1269-1275. https://doi.org/10.1038/sj.bjc.6604650 

  66. Environ Pollut EM Quezada-Maldonado 241 351 2018 10.1016/j.envpol.2018.05.073 Quezada-Maldonado EM, Sanchez-Perez Y, Chirino YI, Vaca-Paniagua F, Garcia-Cuellar CM (2018) miRNAs deregulation in lung cells exposed to airborne particulate matter (PM10) is associated with pathways deregulated in lung tumors. Environ Pollut 241:351-358. https://doi.org/10.1016/j.envpol.2018.05.073 

  67. Chemosphere M Santibanez-Andrade 235 794 2019 10.1016/j.chemosphere.2019.06.232 Santibanez-Andrade M, Sanchez-Perez Y, Chirino YI, Morales-Barcenas R, Herrera LA, Garcia-Cuellar CM (2019) Airborne particulate matter induces mitotic slippage and chromosomal missegregation through disruption of the spindle assembly checkpoint (SAC). Chemosphere 235:794-804. https://doi.org/10.1016/j.chemosphere.2019.06.232 

  68. Chemosphere M Santibanez-Andrade 295 133900 2022 10.1016/j.chemosphere.2022.133900 Santibanez-Andrade M, Sanchez-Perez Y, Chirino YI, Morales-Barcenas R, Quintana-Belmares R, Garcia-Cuellar CM (2022) Particulate matter (PM10) destabilizes mitotic spindle through downregulation of SETD2 in A549 lung cancer cells. Chemosphere 295:133900. https://doi.org/10.1016/j.chemosphere.2022.133900 

  69. Clin Immunol N Li 109 250 2003 10.1016/j.clim.2003.08.006 Li N, Hao M, Phalen RF, Hinds WC, Nel AE (2003) Particulate air pollutants and asthma. A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin Immunol 109:250-265. https://doi.org/10.1016/j.clim.2003.08.006 

  70. Part Fibre Toxicol I Ferecatu 7 18 2010 10.1186/1743-8977-7-18 Ferecatu I, Borot MC, Bossard C, Leroux M, Boggetto N, Marano F, Baeza-Squiban A, Andreau K (2010) Polycyclic aromatic hydrocarbon components contribute to the mitochondria-antiapoptotic effect of fine particulate matter on human bronchial epithelial cells via the aryl hydrocarbon receptor. Part Fibre Toxicol 7:18. https://doi.org/10.1186/1743-8977-7-18 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로