$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Automatic analysis of 3D low dose CT images for early diagnosis of lung cancer

Pattern recognition, v.42 no.6, 2009년, pp.1041 - 1051  

El-Baz, A. (Bioengineering Department, University of Louisville, Louisville, KY, USA) ,  Gimel'farb, G. ,  Falk, R. ,  Abo El-Ghar, M.

Abstract AI-Helper 아이콘AI-Helper

Our long term research goal is to develop a fully automated, image-based diagnostic system for early diagnosis of pulmonary nodules that may lead to lung cancer. This paper focuses on monitoring the development of lung nodules detected in successive chest low dose (LD) CT scans of a patient. We prop...

Keyword

참고문헌 (36)

  1. IEEE Trans. Image Process. Farag 15 4 952 2006 10.1109/TIP.2005.863949 Precise segmentation of multi-modal images 

  2. A. El-Baz, Novel stochastic models for medical image analysis, Ph.D. Dissertation, University of Louisville, Louisville, KY, USA, 2006, pp. 115-150 (Chapter 5). 

  3. Farag 720 2005 Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI’05) Quantitative nodule detection in low dose chest CT scans 

  4. 10.1007/11866565_81 A. Farag, A. El-Baz, G. Gimel’farb, R. Falk, M. Abou El-Ghar, T. Eldiasty, S. Elshazly, Appearance models for robust segmentation of pulmonary nodules in 3D LDCT chest images, in: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI’06), vol. 1, Copenhagen, Denmark, October 1-6, 2006, pp. 662-670. 

  5. 10.1109/ICPR.2006.66 A. El-Baz, A. Farag, G. Gimel’farb, R. Falk, M. Abou El-Ghar, T. Eldiasty, A framework for automatic segmentation of lung nodules from low dose chest CT scans, in: Proceedings of the IAPR International Conference on Pattern Recognition (ICPR’06), Hong Kong, vol. 3, August 20-24, 2006, pp. 611-614. 

  6. J. Med. Image Anal. Maintz 2 1 1998 10.1016/S1361-8415(01)80026-8 A survey of medical image registration 

  7. J. Thora. Imaging Ko 19 3 136 2004 10.1097/01.rti.0000135973.65163.69 Computer-aided diagnosis and the evaluation of lung disease 

  8. Radiology Kostis 231 2 446 2004 10.1148/radiol.2312030553 Small pulmonary nodules: reproducibility of three-dimensional volumetric measurement and estimation of time to follow-up CT 

  9. IEEE Trans. Med. Imaging Maurer 17 5 753 1998 10.1109/42.736031 Registration of head CT images to physical space using a weighted combination of points and surfaces 

  10. J. Opt. Soc. Am. B Horn 4 4 629 1987 10.1364/JOSAA.4.000629 Closed-form solution of absolute orientation using unit quaternions 

  11. IEEE Trans. Med. Imaging Brown 16 6 828 1997 10.1109/42.650879 Method for segmenting chest CT image data using an anatomical model: preliminary results 

  12. Radiology Ko 218 267 2001 10.1148/radiology.218.1.r01ja39267 Chest CT: automated nodule detection and assessment of change over time-preliminary experience 

  13. K. Woods, L. Fan, C. Chen, Y. Wang, Model supported image registration and warping for change detection in computer-aided diagnosis, Applied Imagery Pattern Recognition (AIPR) Annual Workshops, Washington DC, USA, October 16-18, 2000, pp. 180-186. 

  14. Fan 24 1999 Proceedings of the SPIE Conference on Developments in X-Ray Tomography II An integrated approach to 3D warping and registration from lung images 

  15. Acad. Radiol. Dougherty 10 3 249 2003 10.1016/S1076-6332(03)80098-3 Alignment of CT lung volumes with an optical flow method 

  16. Naqa vol. 5 3219 2003 Automated breathing motion tracking for 4D computed tomography 

  17. Med. Phys. Low 30 6 1254 2003 10.1118/1.1576230 A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing 

  18. Zhang vol. 4322 67 2000 3D pulmonary CT image registration with a standard lung atlas 

  19. B. Li, G. Christensen, J. Dill, E. Hoffman, J. Reinhardt, 3-D inter-subject warping and registration of pulmonary CT images for a human lung model, in: Proceedings of the SPIE Conference on Medical Imaging, San Diego, CA, vol. 4683, 2002, pp. 324-335. 

  20. IEEE Trans. Med. Imaging Okada 24 3 409 2005 10.1109/TMI.2004.843172 Robust anisotropic gaussian fitting for volumetric characterization of pulmonary nodules in multislice CT 

  21. Med. Phys. Zhao 26 889 1999 10.1118/1.598605 Two-dimensional multicriterion segmentation of pulmonary nodules on helical CT images 

  22. IEEE Trans. Med. Imaging Kostis 22 1259 2003 10.1109/TMI.2003.817785 Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images 

  23. IEEE Trans. Medical Imaging Reeves 25 4 435 2006 10.1109/TMI.2006.871548 On measuring the change in size of pulmonary nodules 

  24. Eur. Radiol. Wormanns 14 86 2004 10.1007/s00330-003-2132-0 Volumetric measurements of pulmonary nodules at multi-row detector CT: in vivo reproducibility 

  25. Radiology Revel 231 459 2004 10.1148/radiol.2312030241 Pulmonary nodules: preliminary experience with three-dimensional evaluation 

  26. Radiology Goo 235 3 850 2005 10.1148/radiol.2353040737 Volumetric measurement of synthetic lung nodules with multi-detector row CT: effect of various image reconstruction parameters and segmentation thresholds on measurement accuracy 

  27. Radiology Ko 228 3 864 2003 10.1148/radiol.2283020059 Small pulmonary nodules: volume measurement at chest CT-phantom study 

  28. H. Jiang, K. Kelly, Theoretical prediction of lung nodule measurement accuracy under different acquisition and reconstruction conditions, in: Proceedings of the SPIE (Medical Imaging 2004: Physiology, Function and Structure From Medical Images), vol. 5369, 2004, pp. 406-412. 

  29. Gimel’farb 1999 Image Textures and Gibbs Random Fields 

  30. 10.21236/ADA299525 P. Viola, Alignment by maximization of mutual information, Ph.D. Dissertation, MIT, Cambridge, MA, 1995. 

  31. Pattern Recognition Studholme 32 71 1999 10.1016/S0031-3203(98)00091-0 An overlap invariant entropy measure of 3D medical image alignment 

  32. A. Aly, Local features invariance beyond 2D gray spaces, Ph. D. Dissertation, University of Louisville, Louisville, KY, USA, May 2007. 

  33. 10.1073/pnas.93.4.1591 J. Sethian, Fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad Sci. USA 93 (1996) 1591-1595. 

  34. IEEE Trans. Med. Imaging Rueckert 18 8 712 1999 10.1109/42.796284 Nonrigid registration using freeform deformations: application to breast MR images 

  35. Gonzalez 1992 Digital Image Processing 

  36. El-Baz 235 2007 Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI’07) New motion correction models for automatic identification of renal transplant rejection 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로