최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Pattern recognition, v.42 no.6, 2009년, pp.1041 - 1051
El-Baz, A. (Bioengineering Department, University of Louisville, Louisville, KY, USA) , Gimel'farb, G. , Falk, R. , Abo El-Ghar, M.
Our long term research goal is to develop a fully automated, image-based diagnostic system for early diagnosis of pulmonary nodules that may lead to lung cancer. This paper focuses on monitoring the development of lung nodules detected in successive chest low dose (LD) CT scans of a patient. We prop...
IEEE Trans. Image Process. Farag 15 4 952 2006 10.1109/TIP.2005.863949 Precise segmentation of multi-modal images
A. El-Baz, Novel stochastic models for medical image analysis, Ph.D. Dissertation, University of Louisville, Louisville, KY, USA, 2006, pp. 115-150 (Chapter 5).
Farag 720 2005 Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI’05) Quantitative nodule detection in low dose chest CT scans
10.1007/11866565_81 A. Farag, A. El-Baz, G. Gimel’farb, R. Falk, M. Abou El-Ghar, T. Eldiasty, S. Elshazly, Appearance models for robust segmentation of pulmonary nodules in 3D LDCT chest images, in: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI’06), vol. 1, Copenhagen, Denmark, October 1-6, 2006, pp. 662-670.
10.1109/ICPR.2006.66 A. El-Baz, A. Farag, G. Gimel’farb, R. Falk, M. Abou El-Ghar, T. Eldiasty, A framework for automatic segmentation of lung nodules from low dose chest CT scans, in: Proceedings of the IAPR International Conference on Pattern Recognition (ICPR’06), Hong Kong, vol. 3, August 20-24, 2006, pp. 611-614.
J. Med. Image Anal. Maintz 2 1 1998 10.1016/S1361-8415(01)80026-8 A survey of medical image registration
J. Thora. Imaging Ko 19 3 136 2004 10.1097/01.rti.0000135973.65163.69 Computer-aided diagnosis and the evaluation of lung disease
Radiology Kostis 231 2 446 2004 10.1148/radiol.2312030553 Small pulmonary nodules: reproducibility of three-dimensional volumetric measurement and estimation of time to follow-up CT
IEEE Trans. Med. Imaging Maurer 17 5 753 1998 10.1109/42.736031 Registration of head CT images to physical space using a weighted combination of points and surfaces
J. Opt. Soc. Am. B Horn 4 4 629 1987 10.1364/JOSAA.4.000629 Closed-form solution of absolute orientation using unit quaternions
IEEE Trans. Med. Imaging Brown 16 6 828 1997 10.1109/42.650879 Method for segmenting chest CT image data using an anatomical model: preliminary results
Radiology Ko 218 267 2001 10.1148/radiology.218.1.r01ja39267 Chest CT: automated nodule detection and assessment of change over time-preliminary experience
K. Woods, L. Fan, C. Chen, Y. Wang, Model supported image registration and warping for change detection in computer-aided diagnosis, Applied Imagery Pattern Recognition (AIPR) Annual Workshops, Washington DC, USA, October 16-18, 2000, pp. 180-186.
Fan 24 1999 Proceedings of the SPIE Conference on Developments in X-Ray Tomography II An integrated approach to 3D warping and registration from lung images
Acad. Radiol. Dougherty 10 3 249 2003 10.1016/S1076-6332(03)80098-3 Alignment of CT lung volumes with an optical flow method
Naqa vol. 5 3219 2003 Automated breathing motion tracking for 4D computed tomography
Med. Phys. Low 30 6 1254 2003 10.1118/1.1576230 A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing
Zhang vol. 4322 67 2000 3D pulmonary CT image registration with a standard lung atlas
B. Li, G. Christensen, J. Dill, E. Hoffman, J. Reinhardt, 3-D inter-subject warping and registration of pulmonary CT images for a human lung model, in: Proceedings of the SPIE Conference on Medical Imaging, San Diego, CA, vol. 4683, 2002, pp. 324-335.
IEEE Trans. Med. Imaging Okada 24 3 409 2005 10.1109/TMI.2004.843172 Robust anisotropic gaussian fitting for volumetric characterization of pulmonary nodules in multislice CT
Med. Phys. Zhao 26 889 1999 10.1118/1.598605 Two-dimensional multicriterion segmentation of pulmonary nodules on helical CT images
IEEE Trans. Med. Imaging Kostis 22 1259 2003 10.1109/TMI.2003.817785 Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images
IEEE Trans. Medical Imaging Reeves 25 4 435 2006 10.1109/TMI.2006.871548 On measuring the change in size of pulmonary nodules
Eur. Radiol. Wormanns 14 86 2004 10.1007/s00330-003-2132-0 Volumetric measurements of pulmonary nodules at multi-row detector CT: in vivo reproducibility
Radiology Revel 231 459 2004 10.1148/radiol.2312030241 Pulmonary nodules: preliminary experience with three-dimensional evaluation
Radiology Goo 235 3 850 2005 10.1148/radiol.2353040737 Volumetric measurement of synthetic lung nodules with multi-detector row CT: effect of various image reconstruction parameters and segmentation thresholds on measurement accuracy
Radiology Ko 228 3 864 2003 10.1148/radiol.2283020059 Small pulmonary nodules: volume measurement at chest CT-phantom study
H. Jiang, K. Kelly, Theoretical prediction of lung nodule measurement accuracy under different acquisition and reconstruction conditions, in: Proceedings of the SPIE (Medical Imaging 2004: Physiology, Function and Structure From Medical Images), vol. 5369, 2004, pp. 406-412.
Gimel’farb 1999 Image Textures and Gibbs Random Fields
Pattern Recognition Studholme 32 71 1999 10.1016/S0031-3203(98)00091-0 An overlap invariant entropy measure of 3D medical image alignment
A. Aly, Local features invariance beyond 2D gray spaces, Ph. D. Dissertation, University of Louisville, Louisville, KY, USA, May 2007.
10.1073/pnas.93.4.1591 J. Sethian, Fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad Sci. USA 93 (1996) 1591-1595.
IEEE Trans. Med. Imaging Rueckert 18 8 712 1999 10.1109/42.796284 Nonrigid registration using freeform deformations: application to breast MR images
Gonzalez 1992 Digital Image Processing
El-Baz 235 2007 Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI’07) New motion correction models for automatic identification of renal transplant rejection
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.