$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Prediction and control of surface roughness in CNC lathe using artificial neural network

Journal of materials processing technology, v.209 no.7, 2009년, pp.3125 - 3137  

Karayel, Durmus (Tel.: +90 2642774001)

Abstract AI-Helper 아이콘AI-Helper

AbstractIn this study, a neural network approach is presented for the prediction and control of surface roughness in a computer numerically controlled (CNC) lathe. Experiments have been performed on the CNC lathe to obtain the data used for the training and testing of a neural network. The parameter...

Keyword

참고문헌 (30)

  1. Journal of Materials Processing Technology Abouelatta 118 1-3 269 2001 10.1016/S0924-0136(01)00959-1 Surface roughness prediction based on cutting parameters and tool vibrations in turning operations 

  2. Journal of Materials Processing Technology Arbizu 143-144 390 2003 10.1016/S0924-0136(03)00407-2 Surface roughness prediction by factorial design of experiments in turning processes 

  3. Robotics and Computer-Integrated Manufacturing Benardos 18 343 2002 10.1016/S0736-5845(02)00005-4 Prediction of surface roughness in CNC face milling using neural network and Taguchi's design of experiments, robotics and computer integrated manufacturing 

  4. Computer Integrated Manufacturing Systems Brian 10 3 231 1997 10.1016/S0951-5240(97)00013-X A generic intelligent control system for grinding 

  5. Journal of Material Processing Technology Choudhury 67 55 1997 10.1016/S0924-0136(96)02818-X Surface roughness in the turning of high-strength steel by factorial design of experiments 

  6. Journal of Materials Processing Technology Davim 116 2-3 305 2001 10.1016/S0924-0136(01)01063-9 A note on the determination of optimal cutting conditions for surface finish obtained in turning using design of experiments 

  7. Engineering Application of Artificial Intelligence Dimla 12 471 1999 10.1016/S0952-1976(99)00015-9 Application of perceptron neural network to tool-state classification in a metal-turning operation 

  8. International Journal of Production Research Fang 35 179 1997 10.1080/002075497196046 A new algorithm for developing a reference model for predicting surface roughness in finish machining of steels 

  9. Journal of Materials Processing Technology Grzesik 134 265 2003 10.1016/S0924-0136(02)01105-6 Hybrid approach to surface roughness evaluation in multistage machining process 

  10. International Journal of Machine Tools and Manufacture Ho 42 13 1441 2002 10.1016/S0890-6955(02)00078-0 Accurate modeling and prediction of surface roughness by computer vision in turning operations using an adaptive neuro-fuzzy inference system 

  11. Chinese Journal of Mechanical Engineering Hongxiang 15 153 2002 10.3901/CJME.2002.02.153 Surface roughness prediction model for ultra-precision turning aluminum alloy with a single crystal diamond tool 

  12. Robotic and Computer Integrated Manufacturing Hwang 13 181 1997 10.1016/S0736-5845(97)00001-X Non-circular cutting with a lathe using three-stage intelligent controller 

  13. International Journal of Machine Tools and Manufacture Lee 41 9 1251 2001 10.1016/S0890-6955(01)00023-2 Surface roughness inspection by computer vision in turning operations 

  14. Mechatronics Lee 14 129 2004 10.1016/S0957-4158(02)00096-X The model of surface roughness inspection by vision system in turning 

  15. Journal of Materials Processing Technology Liao 40 2293 2000 Design of fuzzy controller for the adaptive control of WEDM process 

  16. Journal of Materials Processing Technology Lin 108 3 286 2001 10.1016/S0924-0136(00)00835-9 Modeling the surface roughness and cutting force for turning 

  17. International Journal of Machine Tools & Manufacturing Mathews 39 723 1999 10.1016/S0890-6955(98)00061-3 Neural-network approach for predicting hole quality in reaming 

  18. Construction and Building Materials Pala 22 3 330 2008 10.1016/j.conbuildmat.2006.08.015 Dynamic soil structure interaction analysis of neural network 

  19. ISA Transactions Pitstra 39 191 2000 10.1016/S0019-0578(00)00008-2 Controller design for constant cutting force turning machine control 

  20. Journal of Materials Processing Technology Pramanik 140 1-3 308 2003 10.1016/S0924-0136(03)00751-9 Cutting performance of diamond tools during ultra-precision turning of electroless-nickel plated die materials 

  21. Journal of Materials Processing Technology Risbood 132 203 2003 10.1016/S0924-0136(02)00920-2 Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process 

  22. Mechatronics Rodolfo 13 825 2003 10.1016/S0957-4158(03)00005-9 Intelligent process super vision for predicting tool wear in machining processes 

  23. Journal of Engineering for Industry Shiraishi 112 78 1990 10.1115/1.2899298 Dimensional and surface roughness control in a turning operation 

  24. Journal of Materials Processing Technology Suneel 121 77 2002 10.1016/S0924-0136(01)01213-4 A technical note on integrated product quality model using artificial neural networks 

  25. Journal of Materials Processing Technology Tsai 39 583 1999 An in-process surface recognition system based on neural networks in end milling cutting operations 

  26. Whitehouse 1994 Handbook of Surface Metrology 

  27. Journal of Materials Processing Technology Wong 138 538 2003 10.1016/S0924-0136(03)00143-2 Machinability data representation with artificial neural network 

  28. Chemical Engineering Science Yiming 58 3115 2003 10.1016/S0009-2509(03)00166-0 Estimation and control of surface roughness in thin film growth using kinetic Monte-Carlo models 

  29. Journal of Engineering for Industry Zhang 113 145 1991 10.1115/1.2899671 Dynamic generation of machined surface. Part 2: Construction of surface topography 

  30. Journal of Dynamic System, Measurement, and Control Zhang 113 273 1991 10.1115/1.2896375 Simulation of surface topography formed during the intermittent turning processes 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로