$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Application of Artificial Intelligent to Predict Surface Roughness

Experimental techniques, v.38 no.4, 2014년, pp.54 - 60  

Asiltürk, İ. (Faculty of Technology, Selcuk University, 42075 Kampü)

Abstract AI-Helper 아이콘AI-Helper

This article proposes for predicting the surface roughness of AISI 1040 steel material using the artificial intelligent. Cutting speed, feed rate, depth of cut, and nose radius have been taken into consideration as input factors and corresponding surface roughness values (Ra, Rt) as output. A series...

Keyword

참고문헌 (26)

  1. 1 Zain , A.M. , Haron , H. , and Sharif , S. , “ Estimation of the Minimum Machining Performance in the Abrasive Waterjet Machining Using Integrated ANN‐SA ,” Expert Systems with Applications 38 ( 7 ): 8316 – 8326 ( 2011 ). 

  2. 2 Derakhshani , E.D. , and Akbari , A.A. , “ Experimental Investigation of Hardness and Spindle Speed Effect on Surface Roughness in Hard Turning Operation Using CBN Cutting Tool ,” Iranian Journal of Mechanical Engineering 60 : 40 – 49 ( 2008 ). 

  3. 3 Lela , B. , Bajić , D. , and Jozić , S. , “ Regression Analysis, Support Vector Machines, and Bayesian Neural Network Approaches to Modeling Surface Roughness in Face Milling ,” International Journal of Advance Manufacturing Technology 42 ( 11–12 ): 1082 – 1088 ( 2009 ). 

  4. 4 Lin , H.‐L. , Chou , T. , and Chou , C.‐P. , “ Optimization of Resistance Spot Welding Process using Taguchi Method and A Neural Network ,” Experimental Techniques 31 ( 5 ): 30 – 36 ( 2007 ). 

  5. 5 Rahman , M. , Zhou , Q. , and Hong , G.S. , “ On‐line Cutting State Recognition in Turning Using a Neural Network ,” International Journal of Advance Manufacturing Technology 10 ( 2 ): 87 – 92 ( 1995 ). 

  6. 6 Latha , B. , and Senthilkumar , V.S. , “ Modeling and Analysis of Surface Roughness Parameters in Drilling GFRP Composites Using Fuzzy Logic ,” Materials and Manufacturing Processes 25 ( 8 ): 817 – 827 ( 2010 ). 

  7. 7 El‐Hossainy , T.M. “ A New Technique for Enhancing Surface Roughness of Metals during Turning ,” Materials and Manufacturing Processes 25 ( 12 ): 1505 – 1512 ( 2010 ). 

  8. 8 Agarwal , S. , and Rao , P.V. , “ A New Surface Roughness Prediction Model for Ceramic Grinding ,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 219 ( 11 ): 811 – 819 ( 2005 ). 

  9. 9 Ozel , T. , and Karpat , Y. , “ Predictive Modeling of Surface Roughness and Tool Wear in Hard Turning Using Regression and Neural Networks ,” International Journal of Machine Tools and Manufacture 45 : 467 – 479 ( 2005 ). 

  10. 10 Chavoshi , S.Z. , and Tajdari , M. , “ Surface Roughness Modelling in Hard Turning Operation of AISI 4140 Using CBN Cutting Tool ,” International Journal of Material Forming 3 ( 4 ): 233 – 239 ( 2010 ). 

  11. 11 Samanta , B. , Erevelles , W. , and Omurtag , Y. , “ Prediction of Workpiece Surface Roughness Using Soft Computing ,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 222 ( 10 ): 1221 – 1232 ( 2008 ). 

  12. 12 Quintana , G. , de Ciurana , J. , and Ribatallada , J. , “ Surface Roughness Generation and Material Removal Rate in Ball End Milling Operations ,” Materials and Manufacturing Processes 25 ( 6 ): 386 – 398 ( 2010 ). 

  13. 13 Tosun , N. , and Huseyinoglu , M. , “ Effect of MQL on Surface Roughness in Milling of AA7075‐T6 ,” Materials and Manufacturing Processes 25 ( 8 ): 793 – 798 ( 2010 ). 

  14. 14 Palanikumar , K. , “ Modeling and Analysis of Delamination Factor and Surface Roughness in Drilling GFRP Composites ,” Materials and Manufacturing Processes 25 ( 10 ): 1059 – 1067 ( 2010 ). 

  15. 15 Bueno , M.A. , Durand , B. , and Renner , M. , “ A Non‐Contact Measurement of the Roughness of Textile Fabrics Techniques ,” Experimental Techniques 24 ( 2 ): 23 – 27 ( 2000 ). 

  16. 16 Benardos , P.G. , and Vosnaikos , G.C. “ Predicting Surface Roughness in Machining: a Review ,” International Journal of Machine Tools and Manufacture 43 : 833 – 844 ( 2003 ). 

  17. 17 Stephenson , D.A. , and Agapiou , J.S. , Metal Cutting Theory and Practice , 2nd Edition , CRC Press , New York ( 2005 ). ISBN‐13: 9780824758882 . 

  18. 18 Nalbant , M. , Gokkaya , H. , and Toktas , I. , “ Comparison of Regression and Artificial Neural Network Models for Surface Roughness Prediction with the Cutting Parameters in CNC Turning ,” Modelling and Simulation in Engineering 2 : 14 ( 2007 ). 

  19. 19 Sahin , Y. , and Motorcu , A.R. , “ Surface Roughness Model in Machining Hardened Steel with Cubic Boron Nitride Cutting Tool ,” International Journal of Refractory Metals and Hard Materials 26 ( 2 ): 84 – 90 ( 2002 ). 

  20. 20 Liou , C.Y. , and Kuo , C.T. , “Data Flow Design for the Back Propagation Algorithm,” International Computer Symposium , ICS, Taiwan, pp. 1 – 5 ( 2002 ). 

  21. 21 Tezel , G. , and Ozbay , Y. , “ A New Approach for Epileptic Seizure Detection Using Adaptive Neural Network ,” Journal of Expert Systems with Applications 36 : 172 – 180 ( 2009 ). 

  22. 22 Topal , E.S. , “ The Role of Stepover Ratio in Prediction of Surface Roughness in Flat End Milling ,” International Journal of Mechanical Sciences 51 ( 11–12 ): 782 – 789 ( 2009 ). 

  23. 23 Ozdeniz , A.H. , and Yilmaz , N. , “ ANN Modeling of the Spontaneous Combustion Occurring in the Industrial‐scale Coal Stockpiles with 10–18 mm Coal Grain Sizes ,” Energy Sources Part A: Recovery, Utilisation and Environmental Effects 31 : 1425 – 1435 ( 2009 ). 

  24. 24 Asilturk , I. , and Unuvar , A. , “ Intelligent Adaptive Control and Monitoring of Band Sawing Using a Neural‐Fuzzy ,” Journal of Material Processing and Technology 209 : 2302 – 2313 ( 2009 ). 

  25. 25 Diamantidis , N.A. , and Karlis , D. , “ Unsupervised Stratification of Cross‐Validation for Accuracy Estimation ,” Artificial Intelligence 116 ( 1–2 ): 1 – 16 ( 2000 ). 

  26. 26 Reddy , B.S. , Padmanabhan , G. , and Reddy , K.V.K. “ Surface Roughness Prediction Techniques for CNC Turning ,” Asian Journal of Scientific Research 1 ( 3 ): 256 – 264 ( 2008 ). 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로