최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Experimental techniques, v.38 no.4, 2014년, pp.54 - 60
Asiltürk, İ. (Faculty of Technology, Selcuk University, 42075 Kampü)
This article proposes for predicting the surface roughness of AISI 1040 steel material using the artificial intelligent. Cutting speed, feed rate, depth of cut, and nose radius have been taken into consideration as input factors and corresponding surface roughness values (Ra, Rt) as output. A series...
1 Zain , A.M. , Haron , H. , and Sharif , S. , “ Estimation of the Minimum Machining Performance in the Abrasive Waterjet Machining Using Integrated ANN‐SA ,” Expert Systems with Applications 38 ( 7 ): 8316 – 8326 ( 2011 ).
2 Derakhshani , E.D. , and Akbari , A.A. , “ Experimental Investigation of Hardness and Spindle Speed Effect on Surface Roughness in Hard Turning Operation Using CBN Cutting Tool ,” Iranian Journal of Mechanical Engineering 60 : 40 – 49 ( 2008 ).
3 Lela , B. , Bajić , D. , and Jozić , S. , “ Regression Analysis, Support Vector Machines, and Bayesian Neural Network Approaches to Modeling Surface Roughness in Face Milling ,” International Journal of Advance Manufacturing Technology 42 ( 11–12 ): 1082 – 1088 ( 2009 ).
4 Lin , H.‐L. , Chou , T. , and Chou , C.‐P. , “ Optimization of Resistance Spot Welding Process using Taguchi Method and A Neural Network ,” Experimental Techniques 31 ( 5 ): 30 – 36 ( 2007 ).
5 Rahman , M. , Zhou , Q. , and Hong , G.S. , “ On‐line Cutting State Recognition in Turning Using a Neural Network ,” International Journal of Advance Manufacturing Technology 10 ( 2 ): 87 – 92 ( 1995 ).
6 Latha , B. , and Senthilkumar , V.S. , “ Modeling and Analysis of Surface Roughness Parameters in Drilling GFRP Composites Using Fuzzy Logic ,” Materials and Manufacturing Processes 25 ( 8 ): 817 – 827 ( 2010 ).
7 El‐Hossainy , T.M. “ A New Technique for Enhancing Surface Roughness of Metals during Turning ,” Materials and Manufacturing Processes 25 ( 12 ): 1505 – 1512 ( 2010 ).
8 Agarwal , S. , and Rao , P.V. , “ A New Surface Roughness Prediction Model for Ceramic Grinding ,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 219 ( 11 ): 811 – 819 ( 2005 ).
9 Ozel , T. , and Karpat , Y. , “ Predictive Modeling of Surface Roughness and Tool Wear in Hard Turning Using Regression and Neural Networks ,” International Journal of Machine Tools and Manufacture 45 : 467 – 479 ( 2005 ).
10 Chavoshi , S.Z. , and Tajdari , M. , “ Surface Roughness Modelling in Hard Turning Operation of AISI 4140 Using CBN Cutting Tool ,” International Journal of Material Forming 3 ( 4 ): 233 – 239 ( 2010 ).
11 Samanta , B. , Erevelles , W. , and Omurtag , Y. , “ Prediction of Workpiece Surface Roughness Using Soft Computing ,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 222 ( 10 ): 1221 – 1232 ( 2008 ).
12 Quintana , G. , de Ciurana , J. , and Ribatallada , J. , “ Surface Roughness Generation and Material Removal Rate in Ball End Milling Operations ,” Materials and Manufacturing Processes 25 ( 6 ): 386 – 398 ( 2010 ).
13 Tosun , N. , and Huseyinoglu , M. , “ Effect of MQL on Surface Roughness in Milling of AA7075‐T6 ,” Materials and Manufacturing Processes 25 ( 8 ): 793 – 798 ( 2010 ).
14 Palanikumar , K. , “ Modeling and Analysis of Delamination Factor and Surface Roughness in Drilling GFRP Composites ,” Materials and Manufacturing Processes 25 ( 10 ): 1059 – 1067 ( 2010 ).
15 Bueno , M.A. , Durand , B. , and Renner , M. , “ A Non‐Contact Measurement of the Roughness of Textile Fabrics Techniques ,” Experimental Techniques 24 ( 2 ): 23 – 27 ( 2000 ).
16 Benardos , P.G. , and Vosnaikos , G.C. “ Predicting Surface Roughness in Machining: a Review ,” International Journal of Machine Tools and Manufacture 43 : 833 – 844 ( 2003 ).
17 Stephenson , D.A. , and Agapiou , J.S. , Metal Cutting Theory and Practice , 2nd Edition , CRC Press , New York ( 2005 ). ISBN‐13: 9780824758882 .
18 Nalbant , M. , Gokkaya , H. , and Toktas , I. , “ Comparison of Regression and Artificial Neural Network Models for Surface Roughness Prediction with the Cutting Parameters in CNC Turning ,” Modelling and Simulation in Engineering 2 : 14 ( 2007 ).
19 Sahin , Y. , and Motorcu , A.R. , “ Surface Roughness Model in Machining Hardened Steel with Cubic Boron Nitride Cutting Tool ,” International Journal of Refractory Metals and Hard Materials 26 ( 2 ): 84 – 90 ( 2002 ).
20 Liou , C.Y. , and Kuo , C.T. , “Data Flow Design for the Back Propagation Algorithm,” International Computer Symposium , ICS, Taiwan, pp. 1 – 5 ( 2002 ).
21 Tezel , G. , and Ozbay , Y. , “ A New Approach for Epileptic Seizure Detection Using Adaptive Neural Network ,” Journal of Expert Systems with Applications 36 : 172 – 180 ( 2009 ).
22 Topal , E.S. , “ The Role of Stepover Ratio in Prediction of Surface Roughness in Flat End Milling ,” International Journal of Mechanical Sciences 51 ( 11–12 ): 782 – 789 ( 2009 ).
23 Ozdeniz , A.H. , and Yilmaz , N. , “ ANN Modeling of the Spontaneous Combustion Occurring in the Industrial‐scale Coal Stockpiles with 10–18 mm Coal Grain Sizes ,” Energy Sources Part A: Recovery, Utilisation and Environmental Effects 31 : 1425 – 1435 ( 2009 ).
24 Asilturk , I. , and Unuvar , A. , “ Intelligent Adaptive Control and Monitoring of Band Sawing Using a Neural‐Fuzzy ,” Journal of Material Processing and Technology 209 : 2302 – 2313 ( 2009 ).
25 Diamantidis , N.A. , and Karlis , D. , “ Unsupervised Stratification of Cross‐Validation for Accuracy Estimation ,” Artificial Intelligence 116 ( 1–2 ): 1 – 16 ( 2000 ).
26 Reddy , B.S. , Padmanabhan , G. , and Reddy , K.V.K. “ Surface Roughness Prediction Techniques for CNC Turning ,” Asian Journal of Scientific Research 1 ( 3 ): 256 – 264 ( 2008 ).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.