$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A SPICE-Compatible New Silicon Nanowire Field-Effect Transistors (SNWFETs) Model

IEEE transactions on nanotechnology, v.8 no.5, 2009년, pp.643 - 649  

Se Han Lee (Dept. of Comput. & Electron. Eng., Korea Univ., Seoul, South Korea) ,  Yun Seop Yu (Dept. of Comput. & Electron. Eng., Korea Univ., Seoul, South Korea) ,  Sung Woo Hwang ,  Doyeol Ahn

Abstract AI-Helper 아이콘AI-Helper

Extraction of carrier mobilities of silicon nanowire FETs (SNWFETs) with Schottky source and drain contacts is performed using a newly developed compact model, which is suitable for efficient circuit simulation. The SNWFET model is based on an equivalent circuit including a Schottky diode model for ...

참고문헌 (28)

  1. Zhang, Z. Y., Jin, C. H., Liang, X. L., Chen, Q., Peng, L.-M.. Current-voltage characteristics and parameter retrieval of semiconducting nanowires. Applied physics letters, vol.88, no.7, 073102-.

  2. Zhang, Z., Yao, K., Liu, Y., Jin, C., Liang, X., Chen, Q., Peng, L.‐M.. Quantitative Analysis of Current–Voltage Characteristics of Semiconducting Nanowires: Decoupling of Contact Effects. Advanced functional materials, vol.17, no.14, 2478-2489.

  3. Javey, A., Nam, S.-W., Friedman, R. S., Yan, H., Lieber, C. M.. Layer-by-Layer Assembly of Nanowires for Three-Dimensional, Multifunctional Electronics. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.7, no.3, 773-777.

  4. Friedman, Robin S., McAlpine, Michael C., Ricketts, David S., Ham, Donhee, Lieber, Charles M.. Nanotechnology: High-speed integrated nanowire circuits. Nature, vol.434, no.7037, 1085-1085.

  5. Science logic gates and computation from assembled nanowire building blocks huang 2001 10.1126/science.1066192 294 1313 

  6. Science nanowire crossbar arrays as address decoders for integrated nanosystems zhong 2003 10.1126/science.1090899 302 1377 

  7. J Korean Phys Soc electrical properties of the zno nanowire transistor and its analysis with equivalent circuit model yim 2006 12 1565 

  8. Lee, Sehan, Yu, Yunseop, Hwang, Sungwoo, Ahn, Doyeol. Equivalent Circuit Model of Semiconductor Nanowire Diode by SPICE. Journal of nanoscience and nanotechnology, vol.7, no.11, 4089-4093.

  9. Lee, Sehan, Yu, Yunseop, Kim, Hanjung, Hwang, Sungwoo, Ahn, Doyeol. Modeling of Semiconductor Nanowire Field-Effect Transistors Considering Schottky-Barrier-Height Lowering. Journal of the Korean Physical Society, vol.51, no.suppl3, S298-S302.

  10. SMARTSPICE Users Manual 2000 

  11. Numerical Analysis A Mathematical Introduction schatzman 2002 10.1093/oso/9780198502791.001.0001 

  12. Byon, K., Tham, D., Fischer, J. E., Johnson, A. T.. Synthesis and postgrowth doping of silicon nanowires. Applied physics letters, vol.87, no.19, 193104-.

  13. Shenai, K.. Characteristics of LPCVD WSi2/n-Si Schottky contacts. IEEE electron device letters : a publication of the IEEE Electron Devices Society, vol.12, no.4, 169-171.

  14. Li, Yat, Qian, Fang, Xiang, Jie, Lieber, Charles M.. Nanowire electronic and optoelectronic devices. Materials today, vol.9, no.10, 18-27.

  15. Schmidt, Volker, Riel, Heike, Senz, Stephan, Karg, Siegfried, Riess, Walter, Gösele, Ulrich. Realization of a Silicon Nanowire Vertical Surround-Gate Field-Effect Transistor. Small, vol.2, no.1, 85-88.

  16. Cui, Y., Duan, X., Hu, J., Lieber, C. M.. Doping and Electrical Transport in Silicon Nanowires. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.104, no.22, 5213-5216.

  17. Zheng, G., Lu, W., Jin, S., Lieber, C. M.. Synthesis and Fabrication of High-Performance n-Type Silicon Nanowire Transistors. Advanced materials, vol.16, no.21, 1890-1893.

  18. Koo, Sang-Mo, Edelstein, Monica D, Li, Qiliang, Richter, Curt A, Vogel, Eric M. Silicon nanowires as enhancement-mode Schottky barrier field-effect transistors. Nanotechnology, vol.16, no.9, 1482-1485.

  19. Lieber, Charles M., Wang, Zhong Lin. Functional Nanowires. MRS bulletin, vol.32, no.2, 99-108.

  20. Jin, S., Whang, D., McAlpine, M. C., Friedman, R. S., Wu, Y., Lieber, C. M.. Scalable Interconnection and Integration of Nanowire Devices without Registration. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.4, no.5, 915-919.

  21. Lu, Wei, Lieber, Charles M. Semiconductor nanowires. Journal of physics. D, applied physics, vol.39, no.21, R387-R406.

  22. Physics of Semiconductor Devices sze 1981 

  23. Aydin, Mehmet Enver, Yakuphanoglu, Fahrettin, Eom, Jae-Hoon, Hwang, Do-Hoon. Electrical characterization of Al/MEH-PPV/p-Si Schottky diode by current–voltage and capacitance–voltage methods. Physica. B, Condensed matter, vol.387, no.1, 239-244.

  24. Padovani, F.A., Stratton, R.. Field and thermionic-field emission in Schottky barriers. Solid-state electronics, vol.9, no.7, 695-707.

  25. Young, K.K.. Short-channel effect in fully depleted SOI MOSFETs. IEEE transactions on electron devices, vol.36, no.2, 399-402.

  26. Mincheol Shin. Computational Study on the Performance of Multiple-Gate Nanowire Schottky-Barrier MOSFETs. IEEE transactions on electron devices, vol.55, no.3, 737-742.

  27. 10.1002/0470090340 

  28. Zhang, M., Knoch, J., Zhao, Q.T., Breuer, U., Mantl, S.. Impact of dopant segregation on fully depleted Schottky-barrier SOI-MOSFETs. Solid-state electronics, vol.50, no.4, 594-600.

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로