$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Mathematical models of skin permeability: An overview 원문보기

International journal of pharmaceutics, v.418 no.1, 2011년, pp.115 - 129  

Mitragotri, Samir (Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, United States) ,  Anissimov, Yuri G. (School of Biomolecular and Physical Sciences, Griffith University, Australia) ,  Bunge, Annette L. (Department of Chemical Engineering, Colorado School of Mines, Golden, CO, United States) ,  Frasch, H. Frederick (Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States) ,  Guy, Richard H. (Department of Pharmacy and Pharmacology, University of Bath, Bath, UK) ,  Hadgraft, Jonathan (School of Pharmacy, University of London, London, UK) ,  Kasting, Gerald B. (Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, United States) ,  Lane, Majella E. (School of Pharmacy, University of London, London, UK) ,  Roberts, Michael S. (School of Medicine, University of Queensland, Brisbane &)

Abstract AI-Helper 아이콘AI-Helper

AbstractMathematical models of skin permeability play an important role in various fields including prediction of transdermal drug delivery and assessment of dermal exposure to industrial chemicals. Extensive research has been performed over the last several decades to yield predictions of skin perm...

Keyword

참고문헌 (161)

  1. J. Pharm. Pharmacol. Abraham 49 858 1997 10.1111/j.2042-7158.1997.tb06126.x Algorithms for skin permeability using hydrogen bond descriptors: the problem of steroids 

  2. Pestic. Sci. Abraham 55 78 1999 10.1002/(SICI)1096-9063(199901)55:1<78::AID-PS853>3.0.CO;2-7 Hydrogen bonding-Part 4: A review of the correlation and prediction of transport properties by an LFER method: Physicochemical properties, brain penetration and skin permeability 

  3. Abramowitz 1965 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 

  4. J. Invest. Dermatol. Anderson 93 280 1989 10.1111/1523-1747.ep12277592 Solute structure-permeability relationships in human stratum corneum 

  5. J. Pharm. Sci. Ando 66 1525 1977 10.1002/jps.2600661105 Skin as an active metabolizing barrier I: Theoretical analysis of topical bioavailability 

  6. Anissimov 271 2008 Dermal Absorption and Toxicity Assessment Mathematical models for different exposure conditions 

  7. J. Pharm. Sci. Anissimov 88 1201 1999 10.1021/js990053i Diffusion modeling of percutaneous absorption kinetics: 1. Effects of flow rate, receptor sampling rate and viable epidermal resistance for a constant donor concentration 

  8. J. Pharm. Sci. Anissimov 90 504 2001 10.1002/1520-6017(200104)90:4<504::AID-JPS1008>3.0.CO;2-H Diffusion modeling of percutaneous absorption kinetics: 2. Finite vehicle volume and solvent deposited solids 

  9. J. Pharm. Sci. Anissimov 93 470 2004 10.1002/jps.10567 Diffusion modeling of percutaneous absorption kinetics: 3. Variable diffusion and partition coefficients, consequences for stratum corneum depth profiles and desorption kinetics 

  10. J. Pharm. Sci. Anissimov 98 772 2009 10.1002/jps.21461 Diffusion modeling of percutaneous absorption kinetics: 4. Effects of a slow equilibration process within stratum corneum on absorption and desorption kinetics 

  11. Bioorg. Med. Chem. Baert 15 6943 2007 10.1016/j.bmc.2007.07.050 Transdermal penetration behaviour of drugs: CART-clustering. QSPR and selection of model compounds 

  12. Pharm. Res. Bando 14 56 1997 10.1023/A:1012003416968 In vivo evaluation of acyclovir prodrug penetration and metabolism through rat skin using a diffusion/bioconversion model 

  13. Int. J. Pharm. Bando 135 91 1996 10.1016/0378-5173(96)85199-4 Analysis of in vitro skin penetration of acyclovir prodrugs based on a diffusion model with a metabolic process 

  14. Ann. Biomed. Eng. Barbero 33 1281 2005 10.1007/s10439-005-5591-4 Modeling of diffusion with partitioning in stratum corneum using a finite element model 

  15. J. Pharm. Sci. Barbero 95 2186 2006 10.1002/jps.20695 Transcellular route of diffusion through stratum corneum: Results from finite element models 

  16. SAR QSAR Environ. Res. Basak 18 45 2007 10.1080/10629360601033671 A quantitative structure-activity relationship (QSAR) study of dermal absorption using theoretical molecular descriptors 

  17. J. Invest. Dermatol. Blank 49 582 1967 10.1038/jid.1967.184 Mechanism of percutaneous absorption. 3. The effect of temperature on the transport of non-electrolytes across the skin 

  18. J. Invest. Dermatol. Blank 45 249 1965 10.1038/jid.1965.44 Cutaneous barriers 

  19. Hum. Exp. Toxicol. Bouwman 27 269 2008 10.1177/0960327107085829 Improving the applicability of (Q)SARs for percutaneous penetration in regulatory risk assessment 

  20. Brenner 1993 Macrotransport Processes 

  21. Bryan 1930 The Papyrus Ebers. Translated from the German version 

  22. Carslaw 1959 Conduction of Heat in Solids 

  23. J. Pharm. Sci. Chandrasekaran 67 1370 1978 10.1002/jps.2600671010 Pharmacokinetics of drug permeation through human skin 

  24. Pharm. Res. Cleek 10 497 1993 10.1023/A:1018981515480 A new method for estimating dermal absorption from chemical exposure. 1. General approach 

  25. Cooper vol. 1 138 1987 Effect of lipid solubility and molecular size on percutaneous absorption 

  26. Eur. J. Pharm. Biopharm. Cordero 51 135 2001 10.1016/S0939-6411(00)00149-1 In vitro based index of topical anti-inflammatory activity to compare a series of NSAIDs 

  27. Crank 1975 The Mathematics of Diffusion 

  28. J. Invest. Dermatol. Cross 117 147 2001 10.1046/j.1523-1747.2001.01398.x Can increasing the viscosity of formulations be used to reduce the human skin penetration of the sunscreen oxybenzone 

  29. Dancik 179 2008 Dermal Absorption and Toxicity Assessment Physiologically based pharmacokinetics and pharmacodynamics of skin 

  30. Biophys. J. Das 97 1941 2009 10.1016/j.bpj.2009.06.054 Simulation studies of stratum corneum lipid mixtures 

  31. AIChE J. Deen 33 1409 1987 10.1002/aic.690330902 Hindered transport of large molecules in liquid-filled pores 

  32. Int. J. Pharm. Degim 170 129 1998 10.1016/S0378-5173(98)00113-6 Skin permeability data: anomalous results 

  33. AIChE J. Dinh 39 2011 1993 10.1002/aic.690391211 Upper and lower limits of human skin electrical resistance in iontophoresis 

  34. Eur. Biophys. J. Egberts 22 423 1994 10.1007/BF00180163 Molecular dynamics simulation of a phospholipid membrane 

  35. J. Invest. Dermatol. Elias 80 Suppl. 44s 1983 10.1038/jid.1983.12 Epidermal lipids, barrier function, and desquamation 

  36. EPA, U. (1992). In: Dermal Exposure Assessment: Principles and Applications. 

  37. EPA, U. (1997). In: Standard Operating Procedures (SOPs) for Residential Exposure Assessments. 

  38. EPA, U. (2004). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual. 

  39. EPA, U. (2007). In: Dermal Exposure Assessment: A Summary of EPA Approaches. 

  40. Flynn 93 1990 Principles of Route-to-route Extrapolation for Risk Assessment Physicochemical determinants of skin absorption 

  41. Int. J. Pharm. Fox 2 41 1979 10.1016/0378-5173(79)90027-9 General physical model for simultaneous diffusion and metabolism in biological membranes. The computational approach for the steady-state case 

  42. J. Pharm. Sci. Frasch 92 2196 2003 10.1002/jps.10466 Steady-state flux and lag time in the stratum corneum lipid pathway: results from finite element models 

  43. J. Pharm. Sci. Frasch 97 1578 2008 10.1002/jps.21035 The transient dermal exposure: theory and experimental examples using skin and silicone membranes 

  44. Risk Anal. Frasch 22 265 2002 10.1111/0272-4332.00024 A random walk model of skin permeation 

  45. J. Pharm. Sci. Frasch 93 1940 2004 10.1002/jps.20133 Erratum: Steady-state flux and time lag in the stratum corneum lipid pathway: results from finite element models 

  46. J. Toxicol. Environ. Health Part A Curr. Issues Frasch 73 1394 2010 10.1080/15287394.2010.497444 In vitro dermal penetration of 4-chloro-3-methylphenol from commercial metal working fluid and aqueous vehicles 

  47. Pharm. Res. Geinoz 21 83 2004 10.1023/B:PHAM.0000012155.27488.2b Quantitative structure-permeation relationships (QSPeRs) to predict skin permeation: a critical evaluation 

  48. Chem. Res. Toxicol. Guy 23 864 2010 10.1021/tx9004105 Predicting the rate and extent of fragrance chemical absoprtion into and through the skin 

  49. Int. J. Pharm. Guy 6 321 1980 10.1016/0378-5173(80)90115-5 A theoretical description relating skin penetration to the thickness of the applied medicament 

  50. Int. J. Pharm. Guy 11 187 1982 10.1016/0378-5173(82)90037-0 Percutaneous metabolism with saturable enzyme kinetics 

  51. Int. J. Pharm. Hadgraft 2 265 1979 10.1016/0378-5173(79)90033-4 The epidermal reservoir: a theoretical approach 

  52. Int. J. Pharm. Hadgraft 4 229 1980 10.1016/0378-5173(80)90138-6 Theoretical aspects of metabolism in the epidermis 

  53. Hadgraft 1 2003 Transdermal Drug Delivery Feasibility assessment in topical and transdermal delivery: mathematical models and in vitro studies 

  54. J. Pharm. Pharmacol. Hadgraft 8 625 1956 10.1111/j.2042-7158.1956.tb12194.x Percutaneous absorption 

  55. Pharm. Res. Hansen 26 1379 2009 10.1007/s11095-009-9849-7 The role of corneocytes in skin transport revised-a combined computational and experimental approach 

  56. Chem. Pharm. Bull. (Tokyo) Hatanaka 38 3452 1990 10.1248/cpb.38.3452 Prediction of skin permeability of drugs. I. Comparison with artificial membrane 

  57. Pharm. Res. Heisig 13 421 1996 10.1023/A:1016048710880 Non steady-state descriptions of drug permeation through stratum corneum. I. The biphasic brick-and-mortar model 

  58. J. Invest. Dermatol. Herkenne 127 887 2007 10.1038/sj.jid.5700642 Dermatopharmacokinetic prediction of topical drug bioavailability in vivo 

  59. J. Soc. Cosmet. Chem. Higuchi 11 85 1960 Physical chemical analysis of percutaneous absorption process from creams and ointments 

  60. J. Pharm. Sci. Higuchi 50 874 1961 10.1002/jps.2600501018 Rate of release of medicaments from ointment bases containing drugs in suspension 

  61. J. Control. Release Higuchi 62 1-2 13 1999 10.1016/S0168-3659(99)00026-7 Mechanistic aspects of iontophoresis in human epidermal membrane 

  62. J. Pharm. Sci. Ibrahim 99 4928 2010 10.1002/jps.22216 Improved method for determining partition and diffusion coefficients in human dermis 

  63. J. Pharm. Sci. Johnson 86 1162 1997 10.1021/js960198e Evaluation of solute permeation through the stratum corneum: lateral bilayer diffusion as the primary transport mechanism 

  64. Biophys. J. Johnson 71 2656 1996 10.1016/S0006-3495(96)79457-2 Lateral diffusion of small compounds in human stratum corneum and model lipid bilayer systems 

  65. J. Occup. Environ. Hygiene Kasting 10 633 2008 10.1080/15459620802304245 A spreadsheet-based method for estimating the skin disposition of volatile compounds: application to N,N-diethyl-m-toluamide (DEET) 

  66. Kasting 117 1992 Prodrugs-Topical and Ocular Drug Delivery Prodrugs for dermal delivery: solubility molecular size and functional group effects 

  67. J. Med. Chem. Katritzky 49 3305 2006 10.1021/jm051031d Skin permeation rate as a function of chemical structure 

  68. Semin. Dermatol. Kim 11 145 1992 Model studies of epidermal permeability 

  69. Pharm. Res. Kontturi 11 1355 1994 10.1023/A:1018915100150 Impedance spectroscopy in human skin. A refined model 

  70. Math. Biosci. Kretsos 208 430 2007 10.1016/j.mbs.2006.10.012 A geometrical model of dermal capillary clearance 

  71. J. Pharm. Sci. Kretsos 93 2820 2004 10.1002/jps.20187 Distributed diffusion-clearance model for transient drug distribution within the skin 

  72. Food Chem. Toxicol. Kroes 45 2007 Application of the Threshold of Toxicological Concern (TTC) to the safety evaluation of cosmetic ingredients 

  73. Kumins 107 1968 Diffusion in Polymers Free volume and other theories 

  74. J. Pharm. Sci. Kurihara-Bergstrom 75 479 1986 10.1002/jps.2600750512 Physicochemical study of percutaneous absorption enhancement by dimethyl sulfoxide: kinetic and thermodynamic determinants of dimethyl sulfoxide mediated mass transfer of alkanols 

  75. J. Pharm. Sci. Kushner 96 3263 2007 10.1002/jps.20955 Evaluation of the porosity, the tortuosity, and the hindrance factor for the transdermal delivery of hydrophilic permeants in the context of the aqueous pore pathway hypothesis using dual-radiolabeled permeability experiments 

  76. Environ. Toxicol. Chem. Kwon 25 1984 2006 10.1897/05-550R.1 Partitioning of moderately hydrophobic endocrine disruptors between water and synthetic membrane vesicles 

  77. Pharm. Res. Lai 15 1579 1998 10.1023/A:1011959217935 Epidermal iontophoresis: II. application of the ionic mobility-pore model to the transport of local anesthetics 

  78. J. Control. Release Lai 58 323 1999 10.1016/S0168-3659(98)00172-2 An analysis of solute structure human epidermal transport relationships in epidermal iontophoresis using the ionic mobility: pore model 

  79. J. Pharm. Pharmacol. Lam 62 738 2010 10.1211/jpp.62.06.0010 The application of feature selection to the development of Gaussian process models for percutaneous absorption 

  80. Chem. Rev. Leo 71 525 1971 10.1021/cr60274a001 Partition coefficients and their uses 

  81. J. Pharm. Sci. Li 86 680 1997 10.1021/js960479m Iontophoretic transport across a synthetic membrane and human epidermal membrane: a study of the effect of permeant charge 

  82. J. Pharm. Sci. Lian 97 584 2008 10.1002/jps.21074 An evaluation of mathematical models for predicting skin permeability 

  83. Pharm. Res. Liu 11 1777 1994 10.1023/A:1018975602818 Transport of beta-estradiol in freshly excised human skin in vitro: diffusion and metabolism in each skin layer 

  84. Int. J. Pharm. Liu 78 123 1992 10.1016/0378-5173(92)90364-8 Assessing the influence of ethanol on simultaneous diffusion and metabolism of beta-estradiol in hairless mouse skin for the ‘asymmetric’ situation in vitro 

  85. Toxicol. Ind. Health Luo 23 39 2007 10.1177/0748233707077430 Predicting human skin absorption of chemicals: development of a novel quantitative structure activity relationship 

  86. Pharm. Res. Magnusson 21 1047 2004 10.1023/B:PHAM.0000029295.38564.e1 Simple rules defining the potential of compounds for transdermal delivery or toxicity 

  87. J. Invest. Dermatol. Magnusson 122 993 2004 10.1111/j.0022-202X.2004.22413.x Molecular size as the main determinant of solute maximum flux across the skin 

  88. J. Control. Release Manabe 66 149 2000 10.1016/S0168-3659(99)00265-5 Analysis of skin permeation-enhancing mechanism of iontophoresis using hydrodynamic pore theory 

  89. J. Phys. Chem. Marrink 19 4155 1994 10.1021/j100066a040 Simulation of water transport through a lipid membrane 

  90. J. Pharm. Sci. McCarley 87 1264 1998 10.1021/js970286e Physiologically relevant one-compartment pharmacokinetic models for skin. 1. Development Of models 

  91. J. Pharm. Sci. McCarley 89 1212 2000 10.1002/1520-6017(200009)89:9<1212::AID-JPS13>3.0.CO;2-4 Physiologically relevant two-compartment pharmacokinetic models for skin 

  92. J. Pharm. Sci. McCarley 90 1699 2001 10.1002/jps.1120 Pharmacokinetic models of dermal absorption 

  93. Risk Anal. McKone 12 543 1992 10.1111/j.1539-6924.1992.tb00711.x Estimating dermal uptake of nonionic organic chemicals from water and soil: I. Unified fugacity-based models for risk assessments 

  94. Int. J. Pharm. Meidan 306 1 2005 10.1016/j.ijpharm.2005.09.025 Transfollicular drug delivery-is it a reality? 

  95. Am. Inst. Chem. Eng. J. Michaels 21 985 1975 10.1002/aic.690210522 Drug permeation through human skin: theory and in vitro experimental measurement 

  96. J. Pharm. Sci. Mitragotri 91 744 2002 10.1002/jps.10048 A theoretical analysis of permeation of small hydrophobic solutes across the stratum corneum based on Scaled Particle Theory 

  97. J. Control. Release Mitragotri 86 69 2003 10.1016/S0168-3659(02)00321-8 Modeling skin permeability to hydrophilic and hydrophobic solutes based on four permeation pathways 

  98. Biophys. J. Mitragotri 77 1268 1999 10.1016/S0006-3495(99)76978-X An analysis of the size selectivity of solute partitioning, diffusion, and permeation across lipid bilayers 

  99. J. Pharm. Pharmacol. Morimoto 44 634 1992 10.1111/j.2042-7158.1992.tb05484.x Prediction of skin permeability of drugs: comparison of human and hairless rat skin 

  100. Int. J. Pharm. Moss 238 105 2002 10.1016/S0378-5173(02)00057-1 Quantitative structure-permeability relationships for percutaneous absorption: re-analysis of steroid data 

  101. Pharm. Res. Mueller 20 1835 2003 10.1023/B:PHAM.0000003382.20030.54 Unexpected clobetasol propionate profile in human stratum corneum after topical application in vitro 

  102. Eur. J. Pharm. Biopharm. Naegel 72 332 2009 10.1016/j.ejpb.2008.11.009 A comparison of two- and three-dimensional models for the simulation of the permeability of human stratum corneum 

  103. Eur. J. Pharm. Biopharm. Naegel 68 368 2008 10.1016/j.ejpb.2007.05.018 In-silico model of skin penetration based on experimentally determined input parameters. Part II: Mathematicalmodelling of in-vitro diffusion experiments. Identificationof critical input paramters 

  104. J. Pharm. Sci. Neely 98 4069 2009 10.1002/jps.21678 Nonlinear quantitative structure-property relationship modeling of skin permeation coefficient 

  105. J. Chem. Inf. Model Neumann 46 424 2006 10.1021/ci050332t A fully computational model for predicting percutaneous drug absorption 

  106. NIOSH, 2009. In: Current Intelligence Bulletin 61: A Strategy for Assigning New NIOSH Skin Notations. 

  107. J. Pharma. Sci. Nitsche 95 649 2006 10.1002/jps.20549 A two-phase analysis of solute partitioning into the stratum corneum 

  108. Toxicol. Sci. Norman 104 210 2008 10.1093/toxsci/kfn070 Effect of PBPK model structure on interpretation of in vivo human aqueous dermal exposure trials 

  109. J. Phys. Chem. B Notman 111 12748 2007 10.1021/jp0723564 Interaction of oleic acid with dipalmitoylphosphatidylcholine (DPPC) bilayers simulated by molecular dynamics 

  110. Biophys. J. Notman 93 2056 2007 10.1529/biophysj.107.104703 The permeability enhancing mechanism of DMSO in ceramide bilayers simulated by molecular dynamics 

  111. Biophys. J. Notman 95 4763 2008 10.1529/biophysj.108.138545 Simulations of skin barrier function: free energies of hydrophobic and hydrophilic transmembrane pores in ceramide bilayers 

  112. Pharm. Res. Peck 1306 1994 10.1023/A:1018998529283 Hindered diffusion of polar molecules through and effective pore radii estimates of intact and ethanol treated human epidermal membrane 

  113. Pharm. Res. Pikal 7 118 1990 10.1023/A:1015816532532 Transport mechanisms in iontophoresis: I. A theoretical model for the electroosmotic flow on flux enhancement in transdermal iontophoresis 

  114. Proc. Natl. Acad. Sci. U. S. A. Pirot 94 1562 1997 10.1073/pnas.94.4.1562 Characterization of the permeability barrier of human skin in vivo 

  115. J. Pharm. Sci. Polat 2010 Application of the aqueous porous pathway model to quantify the effect of sodium lauryl sulfate on ultrasound-induced skin structural perturbation 

  116. J. Pharm. Sci. Polat 100 512 2011 10.1002/jps.22280 Transport pathways and enhancement mechanisms within localized and non-localized transport regions in skin treated with low-frequency sonophoresis and sodium lauryl sulfate 

  117. Adv. Lipid Res. Potts 24 173 1991 10.1016/B978-0-12-024924-4.50011-0 Strategies to enhance permeability via stratum corneum lipid pathways 

  118. Pharm. Res. Potts 9 663 1992 10.1023/A:1015810312465 Predicting skin permeability 

  119. Pharm. Res. Potts 12 1628 1995 10.1023/A:1016236932339 A predictive algorithm for skin permeability: the effects of molecular size and hydrogen bond activity 

  120. Nat. Biotechnol. Prausnitz 26 1261 2008 10.1038/nbt.1504 Transdermal drug delivery 

  121. Press 1992 Numerical Recipes in Fortran 77. The Art of Scientific Computing 

  122. Pharm. Res. Raykar 5 140 1988 10.1023/A:1015956705293 The role of protein and lipid domains in the uptake of solutes by human stratum corneum 

  123. J. Pharm. Sci. Reddy 87 482 1998 10.1021/js9702877 Physiologically relevant one-compartment pharmacokinetic models for skin. 2. Comparison of models when combined with a systemic pharmacokinetic model 

  124. Pharm. Res. Reddy 17 1414 2000 10.1023/A:1007522200422 Does epidermal turnover reduce percutaneous penetration? 

  125. J. Biomech. Rim 41 788 2008 10.1016/j.jbiomech.2007.11.011 Using the method of homogenization to calculate the effective diffusivity of the stratum corneum with permeable corneocytes 

  126. Ann. Biomed. Eng. Rim 33 1422 2005 10.1007/s10439-005-5788-6 Finite element modeling of coupled diffusion with partitioning in transdermal drug delivery 

  127. Roberts 2005 Percutaneous Absorption Mathematical models in percutaneous absorption 

  128. Int. J. Pharm. Roberts 132 23 1996 10.1016/0378-5173(95)04278-4 Epidermal permeability-penetrant structure relationships. 2: The effect of H-bonding groups in penentrants on their diffusion through the stratum corneum 

  129. Roberts 89 2002 Dermatological and Transdermal Formulations Skin transport 

  130. J. Lab. Clin. Med. Rothman 28 1305 1943 The principles of percutaneous absorption 

  131. Drug Des. Discov. Ruddy 8 207 1992 Iontophoretic permeability of polyethylene glycols through hairless rat skin: application of hydrodynamic theory for hindered transport through liquid filled pores 

  132. Rudgley 1993 The Alchemy of Culture: Intoxicants in Society 

  133. Proc. Natl. Acad. Sci. U. S. A. Saffman 72 3111 1975 10.1073/pnas.72.8.3111 Brownian motion in biological membranes 

  134. Sahmel 105 2009 Mathematical Models for Estimating Occupational Exposure to Chemicals Dermal exposure modeling 

  135. Sangster, J., 2010. LOGKOW: A databank of evaluated octanol-water partition coefficients (LogP). Sangster Research Laboratories, http://logkow.cisti.nrc.ca/logkow. 

  136. Physiol. Rev. Scheuplein 51 702 1971 10.1152/physrev.1971.51.4.702 Permeability of the skin 

  137. J. Invest. Dermatol. Scheuplein 52 63 1969 10.1038/jid.1969.9 Percutaneous absorption of steroids 

  138. J. Invest. Dermatol. Scheuplein 48 79 1967 10.1038/jid.1967.11 Mechanism of percutaneous absorption II. Transient diffusion and the relative importance of various routes of skin penetration 

  139. J. Invest. Dermatol. Scheuplein 62 353 1974 10.1111/1523-1747.ep12701619 Mechanism of percutaneous absorption. V. Percutaneous absorption of solvent deposited solids 

  140. J. Control. Release Simmonin 33 125 1995 10.1016/0168-3659(94)00075-6 On the mechanisms of in vitro and in vivo phonophoresis 

  141. J. Pharmacokinet. Biopharm. Singh 21 337 1993 10.1007/BF01061687 Dermal and underlying tissue pharmacokinetics of salicylic-acid after topical application 

  142. Int. J. Pharm. Southwell 18 299 1994 10.1016/0378-5173(84)90145-5 Variations in permeability of human skin within and between specimens 

  143. Pharm. Res. Surber 7 1320 1990 10.1023/A:1015958526423 Optimization of topical therapy: partitioning of drugs into stratum corneum 

  144. Fundam. Appl. Toxicol. Surber 15 99 1990 10.1016/0272-0590(90)90167-I Partitioning of chemicals into human stratum corneum: implications for risk assessment following dermal exposure 

  145. J. Pharm. Sci. Tang 90 545 2001 10.1002/1520-6017(200105)90:5<545::AID-JPS1012>3.0.CO;2-H Theoretical description of transdermal transport of hydrophilic permeants: application to low-frequency sonophoresis 

  146. J. Pharm. Sci. Tang 90 543 2001 10.1002/1520-6017(200105)90:5<543::AID-JPS1012>3.0.CO;2-J Theoretical description of transdermal transprt of hydrophilic permeants: application to low-frequency sonophoresis 

  147. ten Berge, W., 2011. QSARs for skin permeation of chemicals. http://home.planet.nl/∼wtberge/qsarperm.html. 

  148. Pharm. Res. Tezel 19 1841 2002 10.1023/A:1021493424737 A theoretical analysis of low-frequency sonophoresis: dependence of transdermal transport pathways on frequency and energy density 

  149. J. Pharm. Sci. Tezel 92 381 2003 10.1002/jps.10299 A theoretical description of transdermal transport of hydrophilic solutes induced by low-frequency sonophoresis 

  150. Biochim. Biophys. Acta Tieleman 1331 235 1997 10.1016/S0304-4157(97)00008-7 A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems 

  151. J. Invest. Dermatol. Tregear 46 16 1966 10.1038/jid.1966.4 The permeability of the mammalian skin to ions 

  152. J. Physiol. Treherne 133 171 1956 10.1113/jphysiol.1956.sp005575 The permeability of skin to some non-electrolytes 

  153. Vecchia 57 2002 Transdermal Drug Delivery Systems Skin absorption databases and predictive equations 

  154. Walters 1 2002 Dermatological and Transdermal Formulations The structure and function of skin 

  155. J. Pharm. Sci. Wang 95 620 2006 10.1002/jps.20509 A multiphase microscopic model for stratum corneum permeability. I. Formulation, solution and illustrative results for representative compounds 

  156. J. Pharm. Sci. Wang 96 3024 2007 10.1002/jps.20883 A multiphase microscopic model for stratum corneum permeability. II. Estimation of physicochemical parameters and application to a large permeability database 

  157. J. Membr. Biol. Xiang 140 111 1994 10.1007/BF00232899 The relationship between permeant size and permeability in lipid bilayer membranes 

  158. Environ. Sci. Technol. Yamamoto 38 1139 2004 10.1021/es034311w Partitioning of selected estrogenic compounds between synthetic membrane vesicles and water: effects of lipid components 

  159. J. Control. Release Yoshida 25 177 1993 10.1016/0168-3659(93)90077-I Solute molecular size and transdermal iontophoresis acros excised human skin 

  160. Adv. Drug Del. Rev. Yoshida 9 239 1992 10.1016/0169-409X(92)90025-L Structure-transport relations in transdermal iontophoresis 

  161. Pharm. Res. Zhang 26 1974 2009 10.1007/s11095-009-9912-4 Skin solubility determines maximum transepidermal flux for similar size molecules 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로