$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Natural Variation in Small Molecule-Induced TIR-NB-LRR Signaling Induces Root Growth Arrest via EDS1- and PAD4-Complexed R Protein VICTR inArabidopsis 원문보기

The Plant cell, v.24 no.12, 2012년, pp.5177 - 5192  

Kim, Tae-Houn (Division of Biological Sciences, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, California 92093-0116) ,  Kunz, Hans-Henning (Division of Biological Sciences, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, California 92093-0116) ,  Bhattacharjee, Saikat (Division of Plant Sciences, Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211-7310) ,  Hauser, Felix (Division of Biological Sciences, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, California 92093-0116) ,  Park, Jiyoung (Division of Biological Sciences, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, California 92093-0116) ,  Engineer, Cawas (Division of Biological Sciences, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, California 92093-0116) ,  Liu, Amy (Division of Biological Sciences, Section of Cell and Developmental Biology, University of Calif) ,  Ha, Tracy ,  Parker, Jane E. ,  Gassmann, Walter ,  Schroeder, Julian I.

Abstract AI-Helper 아이콘AI-Helper

AbstractIn a chemical genetics screen we identified the small-molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that triggers rapid inhibition of early abscisic acid signal transduction via PHYTOALEXIN DEFICIENT4 (PAD4)- and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-depen...

참고문헌 (77)

  1. Proc. Natl. Acad. Sci. USA Alcazar 106 334 2009 10.1073/pnas.0811734106 Incremental steps toward incompatibility revealed by Arabidopsis epistatic interactions modulating salicylic acid pathway activation 

  2. Proc. Natl. Acad. Sci. USA Armstrong 101 14978 2004 10.1073/pnas.0404312101 Identification of inhibitors of auxin transcriptional activation by means of chemical genetics in Arabidopsis 

  3. BMC Bioinformatics Arvidsson 465 2008 10.1186/1471-2105-9-465 QuantPrime--A flexible tool for reliable high-throughput primer design for quantitative PCR 

  4. Plant Cell Bartsch 18 1038 2006 10.1105/tpc.105.039982 Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7 

  5. Curr. Opin. Plant Biol. Belkhadir 7 391 2004 10.1016/j.pbi.2004.05.009 Plant disease resistance protein signaling: NBS-LRR proteins and their partners 

  6. Science Bhattacharjee 334 1405 2011 10.1126/science.1211592 Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators 

  7. Nature Blilou 433 39 2005 10.1038/nature03184 The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots 

  8. PLoS Biol. Bomblies 5 e236 2007 10.1371/journal.pbio.0050236 Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants 

  9. Mol. Plant Microbe Interact. Borhan 17 711 2004 10.1094/MPMI.2004.17.7.711 The Arabidopsis TIR-NB-LRR gene RAC1 confers resistance to Albugo candida (white rust) and is dependent on EDS1 but not PAD4 

  10. Bioinformatics Broman 19 889 2003 10.1093/bioinformatics/btg112 R/qtl: QTL mapping in experimental crosses 

  11. Nature Brunoud 482 103 2012 10.1038/nature10791 A novel sensor to map auxin response and distribution at high spatio-temporal resolution 

  12. Cell Host Microbe Caplan 3 126 2008 10.1016/j.chom.2008.02.010 Plant NB-LRR immune receptors: From recognition to transcriptional reprogramming 

  13. Cell Chisholm 124 803 2006 10.1016/j.cell.2006.02.008 Host-microbe interactions: Shaping the evolution of the plant immune response 

  14. Mol. Gen. Genet. Clarke 248 278 1995 10.1007/BF02191594 QTL analysis of flowering time in Arabidopsis thaliana 

  15. Plant J. Colon-Carmona 20 503 1999 10.1046/j.1365-313x.1999.00620.x Technical advance: Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein 

  16. Plant Physiol. Curtis 133 462 2003 10.1104/pp.103.027979 A gateway cloning vector set for high-throughput functional analysis of genes in planta 

  17. Curr. Biol. Dello Ioio 17 678 2007 10.1016/j.cub.2007.02.047 Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation 

  18. Nat. Immunol. DeYoung 7 1243 2006 10.1038/ni1410 Plant NBS-LRR proteins in pathogen sensing and host defense 

  19. Cell Di Laurenzio 86 423 1996 10.1016/S0092-8674(00)80115-4 The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root 

  20. Proc. Natl. Acad. Sci. USA Fernandez-Marcos 108 18506 2011 10.1073/pnas.1108644108 Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport 

  21. Plant Cell Feys 17 2601 2005 10.1105/tpc.105.033910 Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity 

  22. Nat. Chem. Biol. Fonseca 5 344 2009 10.1038/nchembio.161 (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate 

  23. Nature Friml 426 147 2003 10.1038/nature02085 Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis 

  24. Nature Fu 486 228 2012 10.1038/nature11162 NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants 

  25. Annu. Rev. Phytopathol. Glazebrook 43 205 2005 10.1146/annurev.phyto.43.040204.135923 Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens 

  26. Genetics Glazebrook 146 381 1997 10.1093/genetics/146.1.381 Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance 

  27. Mol. Cell Gomez-Gomez 5 1003 2000 10.1016/S1097-2765(00)80265-8 FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis 

  28. Development Gonzalez-Garcia 138 849 2011 10.1242/dev.057331 Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots 

  29. Plant Cell Gray 15 1310 2003 10.1105/tpc.010884 Arabidopsis SGT1b is required for SCF(TIR1)-mediated auxin response 

  30. Plant Physiol. Guo 157 757 2011 10.1104/pp.111.181990 Genome-wide comparison of nucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis 

  31. Science Heidrich 334 1401 2011 10.1126/science.1211641 Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses 

  32. Nat. Biotechnol. Hu 21 539 2003 10.1038/nbt816 Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis 

  33. Ann. Bot. (Lond.) Hubbard 109 5 2012 10.1093/aob/mcr252 Abscisic acid and CO2 signalling via calcium sensitivity priming in guard cells, new CDPK mutant phenotypes and a method for improved resolution of stomatal stimulus-response analyses 

  34. Nature Jones 444 323 2006 10.1038/nature05286 The plant immune system 

  35. Trends Biochem. Sci. Kadota 35 199 2010 10.1016/j.tibs.2009.12.005 NLR sensors meet at the SGT1-HSP90 crossroad 

  36. Nucleic Acids Res. Katoh 30 3059 2002 10.1093/nar/gkf436 MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform 

  37. PLoS Pathog. Kim 6 e1001172 2010 10.1371/journal.ppat.1001172 The Arabidopsis resistance-like gene SNC1 is activated by mutations in SRFR1 and contributes to resistance to the bacterial effector AvrRps4 

  38. Plant Physiol. Kim 150 1723 2009 10.1104/pp.109.139238 Resistance to the Pseudomonas syringae effector HopA1 is governed by the TIR-NBS-LRR protein RPS6 and is enhanced by mutations in SRFR1 

  39. Curr. Biol. Kim 21 990 2011 10.1016/j.cub.2011.04.045 Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway 

  40. Genes Dev. Kubo 19 1855 2005 10.1101/gad.1331305 Transcription switches for protoxylem and metaxylem vessel formation 

  41. Science Lorang 338 659 2012 10.1126/science.1226743 Tricking the guard: Exploiting plant defense for disease susceptibility 

  42. Plant Cell Lorenzo 16 1938 2004 10.1105/tpc.022319 JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis 

  43. Plant Cell Meyers 15 809 2003 10.1105/tpc.009308 Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis 

  44. Science Moreno-Risueno 329 1306 2010 10.1126/science.1191937 Oscillating gene expression determines competence for periodic Arabidopsis root branching 

  45. Science Nishimura 301 969 2003 10.1126/science.1086716 Loss of a callose synthase results in salicylic acid-dependent disease resistance 

  46. Genes Dev. Palma 21 1484 2007 10.1101/gad.1559607 Regulation of plant innate immunity by three proteins in a complex conserved across the plant and animal kingdoms 

  47. Science Park 324 1068 2009 10.1126/science.1173041 Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins 

  48. Annu. Rev. Phytopathol. Pedley 41 215 2003 10.1146/annurev.phyto.41.121602.143032 Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato 

  49. BMC Bioinformatics Raghava 7 415 2006 10.1186/1471-2105-7-415 Quantification of the variation in percentage identity for protein sequence alignments 

  50. Plant J. Reuber 16 473 1998 10.1046/j.1365-313x.1998.00319.x Correlation of defense gene induction defects with powdery mildew susceptibility in Arabidopsis enhanced disease susceptibility mutants 

  51. New Phytol. Rietz 191 107 2011 10.1111/j.1469-8137.2011.03675.x Different roles of Enhanced Disease Susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity 

  52. Plant Cell Rogers 9 305 1997 Arabidopsis enhanced disease susceptibility mutants exhibit enhanced susceptibility to several bacterial pathogens and alterations in PR-1 gene expression 

  53. PLoS ONE Sangster 2 e648 2007 10.1371/journal.pone.0000648 Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels 

  54. Nat. Genet. Schmid 37 501 2005 10.1038/ng1543 A gene expression map of Arabidopsis thaliana development 

  55. Nat. Methods Schneider 9 671 2012 10.1038/nmeth.2089 NIH Image to ImageJ: 25 years of image analysis 

  56. Science Schreiber 287 1964 2000 10.1126/science.287.5460.1964 Target-oriented and diversity-oriented organic synthesis in drug discovery 

  57. Nature Sheard 468 400 2010 10.1038/nature09430 Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor 

  58. EMBO J. Shen 26 4293 2007 10.1038/sj.emboj.7601854 Rumble in the nuclear jungle: Compartmentalization, trafficking, and nuclear action of plant immune receptors 

  59. Annu. Rev. Plant Biol. Shirasu 60 139 2009 10.1146/annurev.arplant.59.032607.092906 The HSP90-SGT1 chaperone complex for NLR immune sensors 

  60. PLoS Genet. Singer 2 e144 2006 10.1371/journal.pgen.0020144 A high-resolution map of Arabidopsis recombinant inbred lines by whole-genome exon array hybridization 

  61. Cell Stebbins 89 239 1997 10.1016/S0092-8674(00)80203-2 Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent 

  62. Plant Cell Sweat 19 673 2007 10.1105/tpc.106.047563 Thioredoxin h5 is required for victorin sensitivity mediated by a CC-NBS-LRR gene in Arabidopsis 

  63. Bioinformatics Thompson 19 1155 2003 10.1093/bioinformatics/btg133 RASCAL: Rapid scanning and correction of multiple sequence alignments 

  64. Nature Tian 423 74 2003 10.1038/nature01588 Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana 

  65. Plant Cell Tornero 14 1005 2002 10.1105/tpc.001032 RAR1 and NDR1 contribute quantitatively to disease resistance in Arabidopsis, and their relative contributions are dependent on the R gene assayed 

  66. Plant Physiol. Weigel 158 2 2012 10.1104/pp.111.189845 Natural variation in Arabidopsis: From molecular genetics to ecological genomics 

  67. Curr. Opin. Plant Biol. Wiermer 8 383 2005 10.1016/j.pbi.2005.05.010 Plant immunity: The EDS1 regulatory node 

  68. PLoS ONE Winter 2 e718 2007 10.1371/journal.pone.0000718 An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets 

  69. Curr. Biol. Wirthmueller 17 2023 2007 10.1016/j.cub.2007.10.042 Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defense 

  70. Plant Cell Yang 16 1060 2004 10.1105/tpc.020479 A haplotype-specific Resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis 

  71. Plant Cell Yi 19 2929 2007 10.1105/tpc.107.051821 A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing 

  72. Plant Physiol. Zhang 145 1577 2007 10.1104/pp.107.108720 Alternative splicing and mRNA levels of the disease resistance gene RPS4 are induced during defense responses 

  73. Plant J. Zhang 48 647 2006 10.1111/j.1365-313X.2006.02903.x Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs 

  74. Plant Cell Zhang 15 2636 2003 10.1105/tpc.015842 A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1 

  75. Plant Cell Zhang 15 2647 2003 10.1105/tpc.014894 Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance 

  76. Nucleic Acids Res. Ziolkowski 37 3189 2009 10.1093/nar/gkp183 Genome sequence comparison of Col and Ler lines reveals the dynamic nature of Arabidopsis chromosomes 

  77. Proc. Natl. Acad. Sci. USA Zouhar 101 9497 2004 10.1073/pnas.0402121101 Sorting inhibitors (Sortins): Chemical compounds to study vacuolar sorting in Arabidopsis 

LOADING...

관련 콘텐츠

원문 보기

원문 URL 링크

*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로