$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces 원문보기

Nature communications, v.4, 2013년, pp.1696 -   

Zheng, Shijian (Materials Physics and Applications Division, Center for Integrated Nanotechnologies, MPA-CINT, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA) ,  Beyerlein, Irene J. (Theoretical Division, T-3: fluid dynamics and solid mechanics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA) ,  Carpenter, John S. (Materials Science and Technology Division, MST-6: materials technology-metallurgy, Los Alamos, New Mexico 87545, USA) ,  Kang, Keonwook (1] Theoretical Division, T-3: fluid dynamics and solid mechanics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA [2]) ,  Wang, Jian (Materials Science and Technology Division, MST-8: materials science in radiation & dynamic, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA) ,  Han, Weizhong (Materials Physics and Applications Division, Center for Integrated Nanotechnologies, MPA-CINT, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA) ,  Mara, Nathan A. (Materials Physics and Applications Division, Center for Integrated Nanotechnologies, MPA-CINT, Los Alamos National Laboratory,)

Abstract AI-Helper 아이콘AI-Helper

Bulk nanostructured metals can attribute both exceptional strength and poor thermal stability to high interfacial content, making it a challenge to utilize them in high-temperature environments. Here we report that a bulk two-phase bimetal nanocomposite synthesised via severe plastic deformation uni...

참고문헌 (50)

  1. Prog. Mater. Sci. H Gleiter 33 223 1989 10.1016/0079-6425(89)90001-7 Gleiter, H. Nanocrystalline materials. Prog. Mater. Sci. 33, 223-315 (1989). 

  2. Prog. Mater. Sci. MA Meyers 51 427 2006 10.1016/j.pmatsci.2005.08.003 Meyers, M. A., Mishra, A. & Benson, D. J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427-556 (2006). 

  3. Nature YM Wang 419 912 2002 10.1038/nature01133 Wang, Y. M., Chen, M. W., Zhou, F. H. & Ma, E. High tensile ductility in a nanostructured metal. Nature 419, 912-915 (2002). 

  4. Acta Mater. M Dao 55 4041 2007 10.1016/j.actamat.2007.01.038 Dao, M., Lu, L., Asaro, R. J., De Hosson, J. T. M. & Ma, E. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041-4065 (2007). 

  5. Nat. Mater. YT Zhu 3 351 2004 10.1038/nmat1141 Zhu, Y. T. & Liao, X. Z. Nanostructured metals-retaining ductility. Nat. Mater. 3, 351-352 (2004). 

  6. Acta Mater. M Ames 56 4255 2008 10.1016/j.actamat.2008.04.051 Ames, M. et al. Unraveling the nature of room temperature grain growth in nanocrystalline materials. Acta Mater. 56, 4255-4266 (2008). 

  7. Acta Mater. TR Malow 45 2177 1997 10.1016/S1359-6454(96)00300-X Malow, T. R. & Koch, C. C. Grain growth in nanocrystalline iron prepared by mechanical attrition. Acta Mater. 45, 2177-2186 (1997). 

  8. Science T Chookajorn 337 951 2012 10.1126/science.1224737 Chookajorn, T., Murdoch, H. A. & Schuh, C. A. Design of stable nanocrystalline alloys. Science 337, 951-954 (2012). 

  9. Phys. Rev. Lett. MJ Demkowicz 100 136102 2008 10.1103/PhysRevLett.100.136102 Demkowicz, M. J., Hoagland, R. G. & Hirth, J. P. Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys. Rev. Lett. 100, 136102 (2008). 

  10. Appl. Phys. Lett. NA Mara 92 231901 2008 10.1063/1.2938921 Mara, N. A., Bhattacharyya, D., Dickerson, P., Hoagland, R. G. & Misra, A. Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92, 231901 (2008). 

  11. Int. Mater. Rev. DR Lesuer 41 169 1996 10.1179/imr.1996.41.5.169 Lesuer, D. R. et al. Mechanical behaviour of laminated metal composites. Int. Mater. Rev. 41, 169-197 (1996). 

  12. Acta Mater. A Misra 53 4817 2005 10.1016/j.actamat.2005.06.025 Misra, A., Hirth, J. P. & Hoagland, R. G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817-4824 (2005). 

  13. Acta Mater. MA Phillips 51 3157 2003 10.1016/S1359-6454(03)00127-7 Phillips, M. A., Clemens, B. M. & Nix, W. D. A model for dislocation behavior during deformation of Al/Al3SC (fcc/L1(2))metallic multilayers. Acta Mater. 51, 3157-3170 (2003). 

  14. JOM I Beyerlein 64 1192 2012 10.1007/s11837-012-0431-0 Beyerlein, I. et al. Structure-property-functionality of bimetal interfaces. JOM 64, 1192-1207 (2012). 

  15. Nat. Mater. R Valiev 3 511 2004 10.1038/nmat1180 Valiev, R. Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511-516 (2004). 

  16. Adv. Mater. M Goken 23 2663 2011 10.1002/adma.201100407 Goken, M. & Hoppel, H. W. Tailoring nanostructured, graded, and particle-reinforced Al laminates by accumulative roll bonding. Adv. Mater. 23, 2663-2668 (2011). 

  17. Science XX Huang 312 249 2006 10.1126/science.1124268 Huang, X. X., Hansen, N. & Tsuji, N. Hardening by annealing and softening by deformation in nanostructured metals. Science 312, 249-251 (2006). 

  18. Mater. Sci. Eng. a-Struct Mater. Prop. Microstruct. Proc. HG Jiang 290 128 2000 10.1016/S0921-5093(00)00919-9 Jiang, H. G., Zhu, Y. T., Butt, D. P., Alexandrov, I. V. & Lowe, T. C. Microstructural evolution, microhardness and thermal stability of HPT-processed Cu. Mater. Sci. Eng. a-Struct Mater. Prop. Microstruct. Proc. 290, 128-138 (2000). 

  19. Acta Mater. K Han 46 4691 1998 10.1016/S1359-6454(98)00135-9 Han, K., Embury, J. D., Petrovic, J. J. & Weatherly, G. C. Microstructural aspects of Cu-Ag produced by the Taylor wire method. Acta Mater. 46, 4691-4699 (1998). 

  20. J. Am. Ceram. Soc. TE Mitchell 80 1673 1997 10.1111/j.1151-2916.1997.tb03037.x Mitchell, T. E., Lu, Y. C., Griffin, A. J., Nastasi, M. & Kung, H. Structure and mechanical properties of copper/niobium multilayers. J. Am. Ceram. Soc. 80, 1673-1676 (1997). 

  21. Scripta Materialia J Wang 64 1083 2011 10.1016/j.scriptamat.2011.02.025 Wang, J., Beyerlein, I. J., Mara, N. A. & Bhattacharyya, D. Interface-facilitated deformation twinning in copper within submicron Ag-Cu multilayered composites. Scripta Materialia 64, 1083-1086 (2011). 

  22. J. Appl. Phys. O Anderoglu 103 094322 2008 10.1063/1.2913322 Anderoglu, O., Misra, A., Wang, H. & Zhang, X. Thermal stability of sputtered Cu films with nanoscale growth twins. J. Appl. Phys. 103, 094322 (2008). 

  23. Acta Mater. CX Huang 54 655 2006 10.1016/j.actamat.2005.10.002 Huang, C. X. et al. Deformation twinning in polycrystalline copper at room temperature and low strain rate. Acta Mater. 54, 655-665 (2006). 

  24. Acta Mater. V Randle 52 4067 2004 10.1016/j.actamat.2004.05.031 Randle, V. Twinning-related grain boundary engineering. Acta Mater. 52, 4067-4081 (2004). 

  25. Science L Lu 323 607 2009 10.1126/science.1167641 Lu, L., Chen, X., Huang, X. & Lu, K. Revealing the maximum strength in nanotwinned copper. Science 323, 607-610 (2009). 

  26. Nature XY Li 464 877 2010 10.1038/nature08929 Li, X. Y., Wei, Y. J., Lu, L., Lu, K. & Gao, H. J. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464, 877-880 (2010). 

  27. Nat. Nanotechnol. DC Jang 7 594 2012 10.1038/nnano.2012.116 Jang, D. C., Li, X. Y., Gao, H. J. & Greer, J. R. Deformation mechanisms in nanotwinned metal nanopillars. Nat. Nanotechnol. 7, 594-601 (2012). 

  28. Proc. R. Soc. a-Math. Phys. Eng. Sci. IJ Beyerlein 468 1496 2012 10.1098/rspa.2011.0731 Beyerlein, I. J., Wang, J., Barnett, M. R. & Tome, C. N. Double twinning mechanisms in magnesium alloys via dissociation of lattice dislocations. Proc. R. Soc. a-Math. Phys. Eng. Sci. 468, 1496-1520 (2012). 

  29. Acta Mater. S Vercammen 52 2005 2004 10.1016/j.actamat.2003.12.040 Vercammen, S., Blanpain, B., De Cooman, B. C. & Wollants, P. Cold rolling behaviour of an austenitic, Fe-30Mn-3Al-3Si TWIP-steel: the importance of deformation twinning. Acta Mater. 52, 2005-2012 (2004). 

  30. Acta Metallurgica J Hirsch 36 2905 1988 10.1016/0001-6160(88)90174-5 Hirsch, J., Lucke, K. & Hatherly, M. Mechanism of deformation and development of rolling textures in polycrystalline fcc metals-3. The influence of slip inhomogeneities and twinning. Acta Metallurgica 36, 2905-2927 (1988). 

  31. Philos. Mag. IJ Beyerlein 87 885 2007 10.1080/14786430601003866 Beyerlein, I. J., Toth, L. S., Tome, C. N. & Suwas, S. Role of twinning on texture evolution of silver during equal channel angular extrusion. Philos. Mag. 87, 885-906 (2007). 

  32. Acta Mater. JS Carpenter 60 1576 2012 10.1016/j.actamat.2011.11.045 Carpenter, J. S. et al. Bulk texture evolution of Cu-Nb nanolamellar composites during accumulative roll bonding. Acta Mater. 60, 1576-1586 (2012). 

  33. Acta Mater. Y Saito 47 579 1999 10.1016/S1359-6454(98)00365-6 Saito, Y., Utsunomiya, H., Tsuji, N. & Sakai, T. Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process. Acta Mater. 47, 579-583 (1999). 

  34. Beyerlein, I. J. et al. Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu/Nb multilayers fabricated by severe plastic deformation. J. Mater. Res. (doi:10.1557/jmr.2013.21) . 

  35. Appl. Phys. Lett. WZ Han 100 011911 2012 10.1063/1.3675447 Han, W. Z., Carpenter, J. S., Wang, J., Beyerlein, I. J. & Mara, N. A. Atomic-level study of twin nucleation from face-centered-cubic/body-centered-cubic interfaces in nanolamellar composites. Appl. Phys. Lett. 100, 011911 (2012). 

  36. Acta Mater. SJ Zheng 60 5858 2012 10.1016/j.actamat.2012.07.027 Zheng, S. J. et al. Deformation twinning mechanisms from bi-metal interfaces as revealed by in-situ straining in the TEM. Acta Mater. 60, 5858-5866 (2012). 

  37. J. Appl. Phys. K Kang 111 053531 2012 10.1063/1.3693015 Kang, K., Wang, J. & Beyerlein, I. J. Atomic structure variations of mechanically stable fcc-bcc interfaces. J. Appl. Phys. 111, 053531 (2012). 

  38. Acta Mater. MJ Demkowicz 59 7744 2011 10.1016/j.actamat.2011.09.004 Demkowicz, M. J. & Thilly, L. Structure, shear resistance and interaction with point defects of interfaces in Cu-Nb nanocomposites synthesized by severe plastic deformation. Acta Mater. 59, 7744-7756 (2011). 

  39. Philos. Mag. a-Phys. Condensed Matter Struct. Defects Mech. Properties JK Chen 78 405 1998 Chen, J. K., Chen, G. & Reynolds, W. T. Interfacial structure and growth mechanisms of lath-shaped precipitates in Ni-45 wt% Cr. Philos. Mag. a-Phys. Condensed Matter Struct. Defects Mech. Properties 78, 405-422 (1998). 

  40. Metallurgical Mater. Transactions a-Phys. Metallurgy Mater. Sci. L Wang 41A 421 2010 10.1007/s11661-009-0097-6 Wang, L. et al. Twin nucleation by slip transfer across grain boundaries in commercial purity titanium. Metallurgical Mater. Transactions a-Phys. Metallurgy Mater. Sci. 41A, 421-430 (2010). 

  41. J. Phys.Condes. Matter LL Hsiung 22 395003 2010 10.1088/0953-8984/22/39/395003 Hsiung, L. L. Deformation twinning in a creep-deformed nanolaminate structure. J. Phys.Condes. Matter 22, 395003 (2010). 

  42. Nature MJ Hytch 423 270 2003 10.1038/nature01638 Hytch, M. J., Putaux, J. L. & Penisson, J. M. Measurement of the displacement field of dislocations to 0.03 angstrom by electron microscopy. Nature 423, 270-273 (2003). 

  43. Phys. Rev. Lett. XL Wu 100 095701 2008 10.1103/PhysRevLett.100.095701 Wu, X. L. et al. New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals. Phys. Rev. Lett. 100, 095701 (2008). 

  44. Acta Metall. Mater. P Wagner 43 3799 1995 10.1016/0956-7151(95)90164-7 Wagner, P., Engler, O. & Lucke, K. Formation of Cu-type shear bands and their influence on deformation and texture of rolling fcc {112}<111> single crystals. Acta Metall. Mater. 43, 3799-3812 (1995). 

  45. Acta Metall. Mater. Y Zhou 39 2921 1991 10.1016/0956-7151(91)90108-D Zhou, Y., Neale, K. W. & Toth, L. S. Analytical solutions for the ideal orientations of fcc rolling textures. Acta Metall. Mater. 39, 2921-2930 (1991). 

  46. Scripta Materialia M Kobiyama 44 1547 2001 10.1016/S1359-6462(01)00834-X Kobiyama, M., Inami, T. & Okuda, S. Mechanical behavior and, thermal stability of nanocrystalline copper film prepared by gas deposition method. Scripta Materialia 44, 1547-1551 (2001). 

  47. J. Mater. Res. A Misra 20 2046 2005 10.1557/JMR.2005.0250 Misra, A. & Hoagland, R. G. Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films. J. Mater. Res. 20, 2046-2054 (2005). 

  48. J. Mater. Sci. A Bellou 45 354 2010 10.1007/s10853-009-3943-4 Bellou, A., Scudiero, L. & Bahr, D. F. Thermal stability and strength of Mo/Pt multilayered films. J. Mater. Sci. 45, 354-362 (2010). 

  49. Prog. Mater. Sci. RZ Valiev 51 881 2006 10.1016/j.pmatsci.2006.02.003 Valiev, R. Z. & Langdon, T. G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881-981 (2006). 

  50. J. Appl. Phys. K Kang 112 073501 2012 10.1063/1.4755789 Kang, K., Wang, J., Zheng, S. J. & Beyerlein, I. J. Minimum energy structures of faceted incoherent interfaces. J. Appl. Phys. 112, 073501 (2012). 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로