$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Comparing mechanistic and empirical model projections of crop suitability and productivity: implications for ecological forecasting

Global ecology and biogeography, v.22 no.8, 2013년, pp.1007 - 1018  

Estes, L. D. (STEP Program, Woodrow Wilson School, Princeton University, Princeton, NJ, 08540, USA) ,  Bradley, B. A. (Environmental Conservation, University of Massachusetts, Amherst, MA, 01003, USA) ,  Beukes, H. (Institute for Soil, Climate, and Water, Agricultural Research Council, Stellenbosch, 2599, South Africa) ,  Hole, D. G. (Betty and Gordon Moore Center for Ecosystem Science and Economics, Conservation International, Arlington, VA, 22202, USA) ,  Lau, M. (STEP Program, Woodrow Wilson School, Princeton University, Princeton, NJ, 08540, USA) ,  Oppenheimer, M. G. (STEP Program, Woodrow Wilson School, Princeton University, Princeton, NJ, 08540, USA) ,  Schulze, R. (School of Bioresources Engineering and Environmental Hydrology, University of KwaZulu‐) ,  Tadross, M. A. (Natal, Pietermaritzburg, 3209, South Africa) ,  Turner, W. R. (Climate Systems Analysis Group, University of Cape Town, Rondebosch, 7701, South Africa)

Abstract

AbstractAimIntercomparison of mechanistic and empirical models is an important step towards improving projections of potential species distribution and abundance. We aim to compare suitability and productivity estimates for a well‐understood crop species to evaluate the strengths and weaknesses of mechanistic versus empirical modelling.LocationSouth Africa.MethodsWe compared four habitat suitability models for dryland maize based on climate and soil predictors. Two were created using maximum entropy (MAXENT), the first based on national crop distribution points and the second based only on locations with high productivity. The third approach used a generalized additive model (GAM) trained with continuous productivity data derived from the satellite normalized difference vegetation index (NDVI). The fourth model was a mechanistic crop growth model (DSSAT) made spatially explicit. We tested model accuracy by comparing the results with observed productivity derived from MODIS NDVI and with observed suitability based on the current spatial distribution of maize crop fields.ResultsThe GAM and DSSAT results were linearly correlated to NDVI‐measured yield (R2 = 0.75 and 0.37, respectively). MAXENT suitability values were not linearly related to yield (R2 = 0.08); however, a MAXENT model based on occurrences of high‐productivity maize was linearly related to yield (R2 = 0.62). All models produced crop suitability maps of similarly good accuracy (Kappa = 0.73–75).Main conclusionsThese findings suggest that empirical models can achieve the same or better accuracy as mechanistic models for predicting both suitability (i.e. species range) and productivity (i.e. species abundance). While MAXENT could not predict productivity across the species range when trained on all occurrences, it could when trained with a high‐productivity subset, suggesting that ecological niche models can be adjusted to better correlate with species abundance.

주제어

참고문헌 (52)

  1. Altwegg , R. & Anderson , M.D. ( 2009 ) Rainfall in arid zones: possible effects of climate change on the population ecology of blue cranes . Functional Ecology , 23 , 1014 – 1021 . 

  2. Araújo , M.B. & New , M. ( 2007 ) Ensemble forecasting of species distributions . Trends in Ecology and Evolution , 22 , 42 – 47 . 

  3. Bradley , B.A. & Marvin , D.C. ( 2011 ) Using expert knowledge to satisfy data needs: mapping invasive plant distributions in the western United States . Western North American Naturalist , 71 , 302 – 315 . 

  4. Bradley , B.A. , Estes , L.D. , Hole , D.G. , Holness , S. , Oppenheimer , M. , Turner , W.R. , Beukes , H. , Schulze , R.E. , Tadross , M.A. & Wilcove , D.S. ( 2012 ) Predicting how adaptation to climate change could affect ecological conservation: secondary impacts of shifting agricultural suitability . Diversity and Distributions , 18 , 425 – 437 . 

  5. Byrnes , R.M. ( 1996 ) South Africa: a country study . Federal Research Division, Library of Congress, Washington, DC. 

  6. Cramer , W. , Bondeau , A. , Woodward , F.I. , Prentice , I.C. , Betts , R.A. , Brovkin , V. , Cox , P.M. , Fisher , V. , Foley , J.A. , Friend , A.D. , Kucharik , C. , Lomas , M.R. , Ramankutty , N. , Sitch , S. , Smith , B. , White , A. & Young‐Molling , C. ( 2001 ) Global response of terrestrial ecosystem structure and function to CO 2 and climate change: results from six dynamic global vegetation models . Global Change Biology , 7 , 357 – 373 . 

  7. Crop Estimates Committee ( 2011 ) Crop estimates . Department of Agriculture, Forestry and Fisheries. Pretoria, South Africa. 

  8. Dormann , C.F. ( 2007 ) Promising the future? Global change projections of species distributions . Basic and Applied Ecology , 8 , 387 – 397 . 

  9. Elith , J.H. , Graham , C.P. , Anderson , R. et al . ( 2006 ) Novel methods improve prediction of species' distributions from occurrence data . Ecography , 29 , 129 – 151 . 

  10. Evans , J.M. , Fletcher , R.J. & Alavalapati , J. ( 2010 ) Using species distribution models to identify suitable areas for biofuel feedstock production . GCB Bioenergy , 2 , 63 – 78 . 

  11. FAO ( 2009 ) FAO Statistical Yearbook 2009 . Food and Agricultural Organization of the United Nations. Available at: http://www.fao.org (accessed 27 May 2010). 

  12. Fielding , A.H. & Bell , J.F. ( 2002 ) A review of methods for the assessment of prediction errors in conservation presence/absence models . Environmental Conservation , 24 , 38 – 49 . 

  13. Franklin , J. ( 2010 ) Moving beyond static species distribution models in support of conservation biogeography . Diversity and Distributions , 16 , 321 – 330 . 

  14. Guisan , A. & Zimmermann , N.E. ( 2000 ) Predictive habitat distribution models in ecology . Ecological Modelling , 135 , 147 – 186 . 

  15. He , H.S. , Mladenoff , D.J. & Boeder , J. ( 1996 ) LANDIS, a spatially explicit model of forest landscape disturbance, management, and succession—LANDIS 2.0 users' guide . Department of Forest Ecology and Management, University of Wisconsin‐Madison, Madison, WI, USA. 

  16. Hijmans , R.J. & Graham , C.H. ( 2006 ) The ability of climate envelope models to predict the effect of climate change on species distributions . Global Change Biology , 12 , 2272 – 2281 . 

  17. Hijmans , R.J. , Cameron , S.E. , Parra , J.L. , Jones , P.G. & Jarvis , A. ( 2005 ) Very high resolution interpolated climate surfaces for global land areas . International Journal of Climatology , 25 , 1965 – 1978 . 

  18. Huntley , B. , Barnard , P. , Altwegg , R. , Chambers , L. , Coetzee , B.W.T. , Gibson , L. , Hockey , P.A.R. , Hole , D.G. , Midgley , G.F. , Underhill , L.G. & Willis , S.G. ( 2010 ) Beyond bioclimatic envelopes: dynamic species' range and abundance modelling in the context of climatic change . Ecography , 33 , 621 – 626 . 

  19. Huntley , B. , Altwegg , R. , Barnard , P. , Collingham , Y.C. & Hole , D.G. ( 2012 ) Modelling relationships between species spatial abundance patterns and climate . Global Ecology and Biogeography , 21 , 668 – 681 . 

  20. Jiménez‐Valverde , A. , Diniz , F. , de Azevedo , E.B. & Borges , P.A.V. ( 2009 ) Species distribution models do not account for abundance: the case of arthropods on Terceira Island . Annales Zoologici Fennici , 46 , 451 – 464 . 

  21. Jones , J.W. , Hoogenboom , G. , Porter , C.H. , Boote , K.J. , Batchelor , W.D. , Hunt , L.A. , Wilkens , P.W. , Singh , U. , Gijsman , A.J. & Ritchie , J.T. ( 2003 ) The DSSAT cropping system model . European Journal of Agronomy , 18 , 235 – 265 . 

  22. Jones , P.G. & Thornton , P.K. ( 2003 ) The potential impacts of climate change on maize production in Africa and Latin America in 2055 . Global Environmental Change , 13 , 51 – 59 . 

  23. Keating , B.A. , Carberry , P.S. , Hammer , G.L. et al . ( 2003 ) An overview of APSIM, a model designed for farming systems simulation . European Journal of Agronomy , 18 , 267 – 288 . 

  24. Keith , D.A. , Akçakaya , H.R. , Thuiller , W. , Midgley , G.F. , Pearson , R.G. , Phillips , S.J. , Regan , H.M. , Araújo , M.B. & Rebelo , T.G. ( 2008 ) Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models . Biology Letters , 4 , 560 ‐ 563 . 

  25. Kremen , C. , Cameron , A. , Moilanen , A. et al . ( 2008 ) Aligning conservation priorities across taxa in Madagascar with high‐resolution planning tools . Science , 320 , 222 ‐ 226 . 

  26. Kulhanek , S.A. , Leung , B. & Ricciardi , A. ( 2011 ) Using ecological niche models to predict the abundance and impact of invasive species: application to the common carp . Ecological Applications , 21 , 203 – 213 . 

  27. Leibold , M.A. ( 1995 ) The niche concept revisited – mechanistic models and community context . Ecology , 76 , 1371 – 1382 . 

  28. Lobell , D.B. , Burke , M.B. , Tebaldi , C. , Mastrandrea , M.D. , Falcon , W.P. & Naylor , R.L. ( 2008 ) Prioritizing climate change adaptation needs for food security in 2030 . Science , 319 , 607 – 610 . 

  29. MA ( 2005 ) Millennium ecosystem assessment: Ecosystems and human well‐being – synthesis . Island Press , Washington, DC . Available at: http://www.MAweb.org (accessed 24 February 2011). 

  30. Ma'ali , S.H. , Bruwer , D.de.V. & Prinsloo , M.A. ( 2006–2009 ) Eastern area (2005/2006; 2006/2007; 2007/2008; 2008/2009) . ARC Grain Crops Institute , Potchefstroom, South Africa . 

  31. Morin , X. & Thuiller , W. ( 2009 ) Comparing niche‐and process‐based models to reduce prediction uncertainty in species range shifts under climate change . Ecology , 90 , 1301 – 1313 . 

  32. Nielsen , S.E. , Johnson , C.J. , Heard , D.C. & Boyce , M.S. ( 2005 ) Can models of presence–absence be used to scale abundance? Two case studies considering extremes in life history . Ecography , 28 , 197 – 208 . 

  33. Parry , M.L. , Rosenzweig , C. , Iglesias , A. , Livermore , M. & Fischer , G. ( 2004 ) Effects of climate change on global food production under SRES emissions and socio‐economic scenarios . Global Environmental Change , 14 , 53 – 67 . 

  34. Paruelo , J.M. & Lauenroth , W.K. ( 1998 ) Interannual variability of NDVI and its relationship to climate for North American shrublands and grasslands . Journal of Biogeography , 25 , 721 – 733 . 

  35. Pearce , J. & Ferrier , S. ( 2001 ) The practical value of modelling relative abundance of species for regional conservation planning: a case study . Biological Conservation , 98 , 33 – 43 . 

  36. Pearson , R.G. & Dawson , T.P. ( 2003 ) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography , 12 , 361 – 371 . 

  37. Phillips , S.J. , Anderson , R.P. & Schapire , R.E. ( 2006 ) Maximum entropy modelling of species geographic distributions . Ecological Modelling , 190 , 231 – 259 . 

  38. R Core Development Team ( 2011 ) R: a language and environment for statistical computing . R Foundation for Statistical Computing , Vienna, Austria . Available at: http://www.R‐project.org (accessed 21 January 2012). 

  39. Ramankutty , N. , Foley , J.A. , Norman , J. & McSweeney , K. ( 2002 ) The global distribution of cultivable lands: current patterns and sensitivity to possible climate change . Global Ecology and Biogeography , 11 , 377 – 392 . 

  40. Rosenzweig , C. , Casassa , G. , Karoly , D.J. , Imeson , A. , Liu , C. , Menzel , A. , Rawlins , S. , Root , T.L. , Seguin , B. & Tryjanowski , P. ( 2007 ) Assessment of observed changes and responses in natural and managed systems . Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (ed. by M.L. Parry , O.F. Canziani , J.P. Palutikof , P.J. van der Linden and C.E. Hanson ), pp. 79 – 131 . Cambridge University Press , Cambridge, UK . 

  41. Schulze , R.E. & Horan , M.J.C. ( 2010 ) Methods 1: delineation of South Africa, Lesotho and Swaziland into quinary catchments . Methodological approaches to assessing eco‐hydrological responses to climate change in South Africa (ed. by R.E. Schulze , B.C. Hewitson , K.R. Barichievy , M.A. Tadross , R.P. Kunz , M.J. Horan and T.G. Lumsden ), pp. 63 – 74 . WRC Report 1562/1/10. Water Research Commission , Pretoria, South Africa . 

  42. SiQ ( 2007 ) Point frame sampling: producer independent crop estimate system (PICES) . Available at: http://www.siq.co.za (accessed 11 February 2011). 

  43. SIRI ( 1987 ) Land type series. Memoirs on the agricultural natural resources of South Africa . Soil and Irrigation Research Institute, Department of Agriculture and Water Supply , Pretoria, South Africa . 

  44. Thomas , C.D. , Cameron , A. , Green , R.E. , Bakkenes , M. , Beaumont , L.J. , Collingham , Y.C. , Erasmus , B.F.N. , de Siqueira , M.F. , Grainger , A. , Hannah , L. , Hughes , L. , Huntley , B. , van Jaarsveld , A.S. , Midgley , G.F. , Miles , L. , Ortega‐Huerta , M.A. , Townsend Peterson , A. , Phillips , O.L. & Williams , S.E. ( 2004 ) Extinction risk from climate change . Nature , 427 , 145 – 148 . 

  45. Thuiller , W. , Richardson , D.M. , Pyšek , P. , Midgley , G.F. , Hughes , G.O. & Rouget , M. ( 2005 ) Niche‐based modelling as a tool for predicting the risk of alien plant invasions at a global scale . Global Change Biology , 11 , 2234 – 2250 . 

  46. du Toit , A.S. , Prinsloo , M.A. , Durand , W. & Kiker , G. ( 2000 ) Vulnerability of maize production to climate change and adaptation assessment in South Africa . Climate Change Impacts in Southern Africa Report to the National Climate Change Committee. Department of Environmental Affairs and Tourism , Pretoria, South Africa . 

  47. Tubiello , F.N. , Soussana , J.‐F. & Howden , S.M. ( 2007 ) Crop and pasture response to climate change . Proceedings of the National Academy of Sciences USA , 104 , 19686 – 19690 . 

  48. VanDerWal , J. , Shoo , L.P. , Johnson , C.N. & Williams , S.E. ( 2009 ) Abundance and the environmental niche: environmental suitability estimated from niche models predicts the upper limit of local abundance . The American Naturalist , 174 , 282 – 291 . 

  49. Wafula , B.M. ( 1995 ) Applications of crop simulation in agricultural extension and research in Kenya . Agricultural Systems , 49 , 399 – 412 . 

  50. Walker , N.J. & Schulze , R.E. ( 2008 ) Climate change impacts on agro‐ecosystem sustainability across three climate regions in the maize belt of South Africa . Agriculture, Ecosystems and Environment , 124 , 114 – 124 . 

  51. Wang , J. , Rich , P.M. , Price , K.P. & Kettle , W.D. ( 2005 ) Relations between NDVI, grassland production, and crop yield in the central great plains . Geocarto International , 20 , 5 – 11 . 

  52. Williams , J.W. & Jackson , S.T. ( 2007 ) Novel climates, no‐analog communities, and ecological surprises . Frontiers in Ecology and the Environment , 5 , 475 – 482 . 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로