$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Getting intimate with trypsin, the leading protease in proteomics 원문보기

Mass spectrometry reviews, v.32 no.6, 2013년, pp.453 - 465  

Vandermarliere, Elien (Department of Medical Protein Research, VIB, B‐) ,  Mueller, Michael (9000 Ghent, Belgium) ,  Martens, Lennart (EMBL Outstation, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, UK)

Abstract AI-Helper 아이콘AI-Helper

AbstractNowadays, mass spectrometry‐based proteomics is carried out primarily in a bottom‐up fashion, with peptides obtained after proteolytic digest of a whole proteome lysate as the primary analytes instead of the proteins themselves. This experimental setup crucially relies on a prote...

주제어

참고문헌 (120)

  1. Abita JP , Delaage M , Lazdunski M . 1969 . The mechanism of activation of trypsinogen. The role of the four N‐terminal aspartyl residues . Eur J Biochem 8 : 314 – 324 . 

  2. Alvarez‐Llamas G , de la Cuesta F , Barderas MEG , Darde V , Padial LR , Vivanco F . 2008 . Recent advances in atherosclerosis‐based proteomics: New biomarkers and a future perspective . Expert Rev Proteomics 5 : 679 – 691 . 

  3. Anderson NL , Anderson NG , Pearson TW , Borchers CH , Paulovich AG , Patterson SD , Gillette M , Aebersold R , Carr SA . 2009 . A human proteome detection and quantitation project . Mol Cell Proteomics 8 : 883 – 886 . 

  4. Banumathi E , Haribalaganesh R , Babu SSP , Kumar NS , Sangiliyandi G . 2009 . High‐yielding enzymatic method for isolation and culture of microvascular endothelial cells from bovine retinal blood vessels . Microvasc Res 77 : 377 – 381 . 

  5. Berg J , Tymoczko J , Stryer L . 2002 . Biochemistry , 5th edition . New York : WH Freeman and Company . 

  6. Blow DM , Birktoft JJ , Hartley BS . 1969 . Role of a buried acid group in the mechanism of action of chymotrypsin . Nature 221 : 337 – 340 . 

  7. Bode W , Schwager P . 1975 . The refined crystal structure of bovine beta‐trypsin at 1.8 a resolution. II. Crystallographic refinement, calcium binding site, benzamidine binding site and active site at PH 7.0 . J Mol Biol 98 : 693 – 717 . 

  8. Bode W , Fehlhammer H , Huber R . 1976 . Crystal structure of bovine trypsinogen at 1–8 a resolution. I. Data collection, application of Patterson search techniques and preliminary structural interpretation . J Mol Biol 106 : 325 – 335 . 

  9. Braconi D , Amato L , Bernardini G , Arena S , Orlandini M , Scaloni A , Santucci A . 2011 . Surfome analysis of a wild‐type wine Saccharomyces cerevisiae strain . Food Microbiol 28 : 1220 – 1230 . 

  10. Burkhart JM , Schumbrutzki C , Wortelkamp S , Sickmann A , Zahedi RP . 2012 . Systematic and quantitative comparison of digest efficiency and specificity reveals the impact of trypsin quality on MS‐based proteomics . J Proteomics 75 : 1454 – 1462 . 

  11. Chen EI , Cociorva D , Norris JL , Yates JR III. 2007 . Optimization of mass spectrometry‐compatible surfactants for shotgun proteomics . J Proteome Res 6 : 2529 – 2538 . 

  12. Clark S , Eckardt G , Siddle K , Harrison LC . 1991 . Changes in insulin‐receptor structure associated with trypsin‐induced activation of the receptor tyrosine kinase . Biochem J 276 ( Pt 1 ): 27 – 33 . 

  13. Conrads TP , Anderson GA , Veenstra TD , Pasa‐Tolić L , Smith RD . 2000 . Utility of accurate mass tags for proteome‐wide protein identification . Anal Chem 72 : 3349 – 3354 . 

  14. Craig R , Beavis RC . 2004 . Tandem: Matching proteins with tandem mass spectra . Bioinformatics 20 : 1466 – 1467 . 

  15. Déry O , Corvera CU , Steinhoff M , Bunnett NW . 1998 . Proteinase‐activated receptors: Novel mechanisms of signaling by serine proteases . Am J Physiol 274 : C1429 – C1452 . 

  16. Desiderio DM , Kai M . 1983 . Preparation of stable isotope‐incorporated peptide internal standards for field desorption mass spectrometry quantification of peptides in biologic tissue . Biomed Mass Spectrom 10 : 471 – 479 . 

  17. Di Cera E . 2009 . Serine proteases . IUBMB Life 61 : 510 – 515 . 

  18. Dreisbach A , van der Kooi‐Pol MM , Otto A , Gronau K , Bonarius HPJ , Westra H , Groen H , Becher D , Hecker M , van Dijl JM . 2011 . Surface shaving as a versatile tool to profile global interactions between human serum proteins and the staphylococcus aureus cell surface . Proteomics 11 : 2921 – 2930 . 

  19. Duan C , Huo G , Yang L , Ren D , Chen J . 2012 . Comparison of sensitization between beta‐lactoglobulin and its hydrolysates . Asian Pac J Allergy Immunol 30 : 32 – 39 . 

  20. Ehn B , Allmere T , Telemo E , Bengtsson U , Ekstrand B . 2005 . Modification of IGE binding to beta‐lactoglobulin by fermentation and proteolysis of cow's milk . J Agric Food Chem 53 : 3743 – 3748 . 

  21. Ekici OD , Paetzel M , Dalbey RE . 2008 . Unconventional serine proteases: Variations on the catalytic Ser/His/Asp triad configuration . Protein Sci 17 : 2023 – 2037 . 

  22. Fehlhammer H , Bode W , Huber R . 1977 . Crystal structure of bovine trypsinogen at 1–8 a resolution. II. Crystallographic refinement, refined crystal structure and comparison with bovine trypsin . J Mol Biol 111 : 415 – 438 . 

  23. Feng J , Naiman DQ , Cooper B . 2007 . Probability‐based pattern recognition and statistical framework for randomization: Modeling tandem mass spectrum/peptide sequence false match frequencies . Bioinformatics 23 : 2210 – 2217 . 

  24. Fischer F , Poetsch A . 2006 . Protein cleavage strategies for an improved analysis of the membrane proteome . Proteome Sci 4 : 2 . 

  25. Fonslow BR , Stein BD , Webb KJ , Xu T , Choi J , Park SK , Yates JR III. 2013 . Digestion and depletion of abundant proteins improves proteomic coverage . Nat Methods 10 : 54 – 56 . 

  26. Fontana A , Polverino de Laureto P , De Filippis V , Scaramella E , Zambonin M . 1997 . Probing the partly folded states of proteins by limited proteolysis . Fold Des 2 : R17 – R26 . 

  27. Freer ST , Kraut J , Robertus JD , Wright HT , Xuong NH . 1970 . Chymotrypsinogen: 2.5‐Angstrom crystal structure, comparison with alpha‐chymotrypsin, and implications for zymogen activation . Biochemistry 9 : 1997 – 2009 . 

  28. Frewen B , MacCoss MJ . 2007 . Using bibliospec for creating and searching tandem ms peptide libraries . Curr Protoc Bioinformatics Chapter 13 : Unit 13.7 . 

  29. Geer LY , Markey SP , Kowalak JA , Wagner L , Xu M , Maynard DM , Yang X , Shi W , Bryant SH . 2004 . Open mass spectrometry search algorithm . J Proteome Res 3 : 958 – 964 . 

  30. Gevaert K , Van Damme P , Ghesquière B , Impens F , Martens L , Helsens K , Vandekerckhove J . 2007 . A la carte proteomics with an emphasis on gel‐free techniques . Proteomics 7 : 2698 – 2718 . 

  31. Glatter T , Ludwig C , Ahrne E , Aebersold R , Heck AJR , Schmidt A . 2012 . Large‐scale quantitative assessment of different in‐solution protein digestion protocols reveals superior cleavage efficiency of tandem Lys‐C/trypsin proteolysis over trypsin digestion . J Proteome Res 11 : 5145 – 5156 . 

  32. Gordon JA , Jencks WP . 1963 . The relationship of structure to the effectiveness of denaturing agents for proteins . Biochemistry 2 : 47 – 57 . 

  33. Grabe M , Forsberg B . 1986 . Retrograde trypsin instillation into the renal pelvis for the dissolution of obstructive blood clots . Eur Urol 12 : 69 – 70 . 

  34. Greene RFJ , Pace CN . 1974 . Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, alpha‐chymotrypsin, and beta‐lactoglobulin . J Biol Chem 249 : 5388 – 5393 . 

  35. Halfon S , Craik CS . 1998 . Trypsin . In: Barrett AJ , Rawlings ND , Woessner JF , editors. Handbook of proteolytic enzymes . London : Academic Press . pp. 12 – 21 . 

  36. Hamady M , Cheung THT , Tufo H , Knight R . 2005 . Does protein structure influence trypsin miscleavage? Using structural properties to predict the behavior of related proteins . IEEE Eng Med Biol Mag 24 : 58 – 66 . 

  37. Hancock W , Omenn G , Legrain P , Paik Y . 2011 . Proteomics, human proteome project, and chromosomes . J Proteome Res 10 : 210 . 

  38. Harris WA , Janecki DJ , Reilly JP . 2002 . Use of matrix clusters and trypsin autolysis fragments as mass calibrants in matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry . Rapid Commun Mass Spectrom 16 : 1714 – 1722 . 

  39. Hedstrom L . 2002 . Serine protease mechanism and specificity . Chem Rev 102 : 4501 – 4524 . 

  40. Hentzer B , Kobayasi T . 1975 . Separation of human epidermal cells from fibroblasts in primary skin culture . Arch Dermatol Forsch 252 : 39 – 46 . 

  41. Hervey WJ IV , Strader MB , Hurst GB . 2007 . Comparison of digestion protocols for microgram quantities of enriched protein samples . J Proteome Res 6 : 3054 – 3061 . 

  42. Hirota M , Ohmuraya M , Baba H . 2006 . The role of trypsin, trypsin inhibitor, and trypsin receptor in the onset and aggravation of pancreatitis . J Gastroenterol 41 : 832 – 836 . 

  43. Holman SW , Sims PFG , Eyers CE . 2012 . The use of selected reaction monitoring in quantitative proteomics . Bioanalysis 4 : 1763 – 1786 . 

  44. Hubbard SJ . 1998 . The structural aspects of limited proteolysis of native proteins . Biochim Biophys Acta 1382 : 191 – 206 . 

  45. Jain E , Bairoch A , Duvaud S , Phan I , Redaschi N , Suzek BE , Martin MJ , McGarvey P , Gasteiger E . 2009 . Infrastructure for the life sciences: Design and implementation of the UniProt website . BMC Bioinformatics 10 : 136 . 

  46. Ji B , Logsdon CD . 2011 . Digesting new information about the role of trypsin in pancreatitis . Gastroenterology 141 : 1972 – 1975 . 

  47. Joys TM , Kim H . 1979 . The susceptibility to tryptic hydrolysis of peptide bonds involving epsilon‐ n ‐methyllysine . Biochim Biophys Acta 581 : 360 – 362 . 

  48. Käll L , Storey JD , MacCoss MJ , Noble WS . 2008 . Assigning significance to peptides identified by tandem mass spectrometry using decoy databases . J Proteome Res 7 : 29 – 34 . 

  49. Kattan JD , Cocco RR , Järvinen KM . 2011 . Milk and soy allergy . Pediatr Clin North Am 58 : 407 – 426 , x. 

  50. Kay J , Kassell B . 1971 . The autoactivation of trypsinogen . J Biol Chem 246 : 6661 – 6665 . 

  51. Keil B . 1992 . Specificity of proteolysis . Berlin—Heidelberg—New York : Springer‐Verlag . 

  52. Keuhne W . 1877 . Uber das trypsin (enzym des pankreas). Verhanlungen des naturhistorisch‐medicischen vereins zu Heidelberg , Vol. 1 . pp. 194 – 198 . 

  53. Kirkpatrick CJ , Melzner I , Göller T . 1985 . Comparative effects of trypsin, collagenase and mechanical harvesting on cell membrane lipids studied in monolayer‐cultured endothelial cells and a green monkey kidney cell line . Biochim Biophys Acta 846 : 120 – 126 . 

  54. Klammer AA , MacCoss MJ . 2006 . Effects of modified digestion schemes on the identification of proteins from complex mixtures . J Proteome Res 5 : 695 – 700 . 

  55. Kraut J . 1971 . The enzymes . New York and London : Academic Press . pp 165 – 183 . 

  56. Kunitz M . 1939 . Formation of trypsin from crystalline trypsinogen by means of enterokinase . J Gen Physiol 22 : 429 – 446 . 

  57. Lange V , Picotti P , Domon B , Aebersold R . 2008 . Selected reaction monitoring for quantitative proteomics: A tutorial . Mol Syst Biol 4 : 222 . 

  58. Lin Y , Zhou J , Bi D , Chen P , Wang X , Liang S . 2008 . Sodium‐deoxycholate‐assisted tryptic digestion and identification of proteolytically resistant proteins . Anal Biochem 377 : 259 – 266 . 

  59. Martens L , Hermjakob H , Jones P , Adamski M , Taylor C , States D , Gevaert K , Vandekerckhove J , Apweiler R . 2005 . Pride: The proteomics identifications database . Proteomics 5 : 3537 – 3545 . 

  60. Martens L , Vandekerckhove J , Gevaert K . 2005 . DBToolkit: Processing protein databases for peptide‐centric proteomics . Bioinformatics 21 : 3584 – 3585 . 

  61. Matallana‐Surget S , Leroy B , Wattiez R . 2010 . Shotgun proteomics: Concept, key points and data mining . Expert Rev Proteomics 7 : 5 – 7 . 

  62. Meyer HE , Stühler K . 2007 . High‐performance proteomics as a tool in biomarker discovery . Proteomics 7 (Suppl. 1): 18 – 26 . 

  63. Neurath H . 1994 . Proteolytic enzymes past and present: The second golden era. recollections, special section in honor of Max Perutz . Protein Sci 3 : 1734 – 1739 . 

  64. Nystedt S , Emilsson K , Wahlestedt C , Sundelin J . 1994 . Molecular cloning of a potential proteinase activated receptor . Proc Natl Acad Sci USA 91 : 9208 – 9212 . 

  65. Olsen JV , Ong S , Mann M . 2004 . Trypsin cleaves exclusively C‐terminal to arginine and lysine residues . Mol Cell Proteomics 3 : 608 – 614 . 

  66. Oppenheimer HL , Labouesse B , Hess GP . 1966 . Implication of an ionizing group in the control of conformation and activity of chymotrypsin . J Biol Chem 241 : 2720 – 2730 . 

  67. Paetzel M , Strynadka NC . 1999 . Common protein architecture and binding sites in proteases utilizing a Ser/Lys dyad mechanism . Protein Sci 8 : 2533 – 2536 . 

  68. Page MJ , Di Cera E . 2008 . Evolution of peptidase diversity . J Biol Chem 283 : 30010 – 30014 . 

  69. Paik Y , Jeong S , Omenn GS , Uhlen M , Hanash S , Cho SY , Lee H , Na K , Choi E , Yan F , Zhang F , Zhang Y , Snyder M , Cheng Y , Chen R , Marko‐Varga G , Deutsch EW , Kim H , Kwon J , Aebersold R , Bairoch A , Taylor AD , Kim KY , Lee E , Hochstrasser D , Legrain P , Hancock WS . 2012 . The chromosome‐centric human proteome project for cataloging proteins encoded in the genome . Nat Biotechnol 30 : 221 – 223 . 

  70. Paik Y , Omenn GS , Uhlen M , Hanash S , Marko‐Varga G , Aebersold R , Bairoch A , Yamamoto T , Legrain P , Lee H , Na K , Jeong S , He F , Binz P , Nishimura T , Keown P , Baker MS , Yoo JS , Garin J , Archakov A , Bergeron J , Salekdeh GH , Hancock WS . 2012 . Standard guidelines for the chromosome‐centric human proteome project . J Proteome Res 11 : 2005 – 2013 . 

  71. Pasa‐Tolić L , Masselon C , Barry RC , Shen Y , Smith RD . 2004 . Proteomic analyses using an accurate mass and time tag strategy . Biotechniques 37 : 621 – 624 , 626–633, 636 passim. 

  72. Perkins DN , Pappin DJ , Creasy DM , Cottrell JS . 1999 . Probability‐based protein identification by searching sequence databases using mass spectrometry data . Electrophoresis 20 : 3551 – 3567 . 

  73. Polgár L . 2005 . The catalytic triad of serine peptidases . Cell Mol Life Sci 62 : 2161 – 2172 . 

  74. Poncz L , Dearborn DG . 1983 . The resistance to tryptic hydrolysis of peptide bonds adjacent to N epsilon, N‐dimethyllysyl residues . J Biol Chem 258 : 1844 – 1850 . 

  75. Poschmann G , Sitek B , Sipos B , Hamacher M , Vonend O , Meyer HE , Stühler K . 2009 . Cell‐based proteome analysis: The first stage in the pipeline for biomarker discovery . Biochim Biophys Acta 1794 : 1309 – 1316 . 

  76. Proc JL , Kuzyk MA , Hardie DB , Yang J , Smith DS , Jackson AM , Parker CE , Borchers CH . 2010 . A quantitative study of the effects of chaotropic agents, surfactants, and solvents on the digestion efficiency of human plasma proteins by trypsin . J Proteome Res 9 : 5422 – 5437 . 

  77. Rabilloud T , Hochstrasser D , Simpson RJ . 2010 . Is a gene‐centric human proteome project the best way for proteomics to serve biology ? Proteomics 10 : 3067 – 3072 . 

  78. Raijmakers R , Neerincx P , Mohammed S , Heck AJR . 2010 . Cleavage specificities of the brother and sister proteases Lys‐C and Lys‐N . Chem Commun (Camb) 46 : 8827 – 8829 . 

  79. Rawlings ND , Barrett AJ . 1994 . Families of serine peptidases . Methods Enzymol 244 : 19 – 61 . 

  80. Rawlings ND , Barrett AJ , Bateman A . 2012 . MEROPS: The database of proteolytic enzymes, their substrates and inhibitors . Nucleic Acids Res 40 : D343 – D350 . 

  81. Reker D , Malmström L . 2012 . Bioinformatic challenges in targeted proteomics . J Proteome Res 11 : 4393 – 4402 . 

  82. Rice RH , Means GE , Brown WD . 1977 . Stabilization of bovine trypsin by reductive methylation . Biochim Biophys Acta 492 : 316 – 321 . 

  83. Rodriguez J , Gupta N , Smith RD , Pevzner PA . 2008 . Does trypsin cut before proline ? J Proteome Res 7 : 300 – 305 . 

  84. Rokhlin OW , Guseva NV , Taghiyev AF , Glover RA , Cohen MB . 2004 . Multiple effects of N‐alpha‐tosyl‐L‐phenylalanyl chloromethyl ketone (TPCK) on apoptotic pathways in human prostatic carcinoma cell lines . Cancer Biol Ther 3 : 761 – 768 . 

  85. Rühlmann A , Kukla D , Schwager P , Bartels K , Huber R . 1973 . Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. Crystal structure determination and stereochemistry of the contact region . J Mol Biol 77 : 417 – 436 . 

  86. Sadygov RG , Cociorva D , Yates JR III. 2004 . Large‐scale database searching using tandem mass spectra: Looking up the answer in the back of the book . Nat Methods 1 : 195 – 202 . 

  87. Schechter I , Berger A . 1967 . On the size of the active site in proteases. I. Papain . Biochem Biophys Res Commun 27 : 157 – 162 . 

  88. Schlosser A , Vanselow JT , Kramer A . 2005 . Mapping of phosphorylation sites by a multi‐protease approach with specific phosphopeptide enrichment and NanoLC‐Ms/Ms analysis . Anal Chem 77 : 5243 – 5250 . 

  89. Sha H , Ma Q , Jha RK . 2009 . Trypsin is the culprit of multiple organ injury with severe acute pancreatitis . Med Hypotheses 72 : 180 – 182 . 

  90. Shotton DM , Watson HC . 1970 . Three‐dimensional structure of tosyl‐elastase . Nature 225 : 811 – 816 . 

  91. Siepen JA , Keevil E , Knight D , Hubbard SJ . 2007 . Prediction of missed cleavage sites in tryptic peptides aids protein identification in proteomics . J Proteome Res 6 : 399 – 408 . 

  92. Smillie LB , Neurath H . 1959 . Reversible inactivation of trypsin by anhydrous formic acid . J Biol Chem 234 : 355 – 359 . 

  93. Smith RD , Anderson GA , Lipton MS , Pasa‐Tolic L , Shen Y , Conrads TP , Veenstra TD , Udseth HR . 2002 . An accurate mass tag strategy for quantitative and high‐throughput proteome measurements . Proteomics 2 : 513 – 523 . 

  94. Soleimani M , Nadri S . 2009 . A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow . Nat Protoc 4 : 102 – 106 . 

  95. Sprang S , Standing T , Fletterick RJ , Stroud RM , Finer‐Moore J , Xuong NH , Hamlin R , Rutter WJ , Craik CS . 1987 . The three‐dimensional structure of Asn102 mutant of trypsin: Role of Asp102 in serine protease catalysis . Science 237 : 905 – 909 . 

  96. Staes A , Demol H , Van Damme J , Martens L , Vandekerckhove J , Gevaert K . 2004 . Global differential non‐gel proteomics by quantitative and stable labeling of tryptic peptides with oxygen‐18 . J Proteome Res 3 : 786 – 791 . 

  97. Steinhoff M , Vergnolle N , Young SH , Tognetto M , Amadesi S , Ennes HS , Trevisani M , Hollenberg MD , Wallace JL , Caughey GH , Mitchell SE , Williams LM , Geppetti P , Mayer EA , Bunnett NW . 2000 . Agonists of proteinase‐activated receptor 2 induce inflammation by a neurogenic mechanism . Nat Med 6 : 151 – 158 . 

  98. Swaney DL , Wenger CD , Coon JJ . 2010 . Value of using multiple proteases for large‐scale mass spectrometry‐based proteomics . J Proteome Res 9 : 1323 – 1329 . 

  99. Tabb DL , Huang Y , Wysocki VH , Yates JR III. 2004 . Influence of basic residue content on fragment ion peak intensities in low‐energy collision‐induced dissociation spectra of peptides . Anal Chem 76 : 1243 – 1248 . 

  100. Thiede B , Lamer S , Mattow J , Siejak F , Dimmler C , Rudel T , Jungblut PR . 2000 . Analysis of missed cleavage sites, tryptophan oxidation and N‐terminal pyroglutamylation after in‐gel tryptic digestion . Rapid Commun Mass Spectrom 14 : 496 – 502 . 

  101. Tjalsma H , Lambooy L , Hermans PW , Swinkels DW . 2008 . Shedding & shaving: Disclosure of proteomic expressions on a bacterial face . Proteomics 8 : 1415 – 1428 . 

  102. Tobita T , Folk JE . 1967 . Chymotrypsin c. 3. Sequence of amino acids around an essential histidine residue . Biochim Biophys Acta 147 : 15 – 25 . 

  103. Tsai C , Polverino de Laureto P , Fontana A , Nussinov R . 2002 . Comparison of protein fragments identified by limited proteolysis and by computational cutting of proteins . Protein Sci 11 : 1753 – 1770 . 

  104. Uniprot Consortium . 2011 . Ongoing and future developments at the universal protein resource . Nucleic Acids Res 39 : D214 – D219 . 

  105. Vaudel M , Sickmann A , Martens L . 2012 . Current methods for global proteome identification . Expert Rev Proteomics 9 : 519 – 532 . 

  106. Vialás V , Perumal P , Gutierrez D , Ximénez‐Embún P , Nombela C , Gil C , Chaffin WL . 2012 . Cell surface shaving of Candida albicans biofilms, hyphae, and yeast form cells . Proteomics 12 : 2331 – 2339 . 

  107. Vizcaíno JA , Côté R , Reisinger F , Foster JM , Mueller M , Rameseder J , Hermjakob H , Martens L . 2009 . A guide to the proteomics identifications database proteomics data repository . Proteomics 9 : 4276 – 4283 . 

  108. Voet D , Voet J . 2004 . Biochemistry . New York : John Wiley & Sons . 

  109. von Berg A , Koletzko S , Grübl A , Filipiak‐Pittroff B , Wichmann H , Bauer CP , Reinhardt D , Berdel D . 2003 . The effect of hydrolyzed cow's milk formula for allergy prevention in the first year of life: The German Infant Nutritional Intervention Study, a randomized double‐blind trial . J Allergy Clin Immunol 111 : 533 – 540 . 

  110. Vorob'ev MM , Dalgalarrondo M , Chobert J , Haertlé T . 2000 . Kinetics of beta‐casein hydrolysis by wild‐type and engineered trypsin . Biopolymers 54 : 355 – 364 . 

  111. Vu TK , Hung DT , Wheaton VI , Coughlin SR . 1991 . Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation . Cell 64 : 1057 – 1068 . 

  112. Walsh KA , Neurath H . 1964 . Trypsinogen and chymotrypsinogen as homologous proteins . Proc Natl Acad Sci USA 52 : 884 – 889 . 

  113. Walter J , Steigemann W , Singh T , Bartunik H , Bode W , Huber R . 1982 . On the disordered activation domain in trypsinogen: Chemical labelling and low‐temperature crystallography . Acta Cryst B38 : 1462 – 1472 . 

  114. Walther TC , Mann M . 2010 . Mass spectrometry‐based proteomics in cell biology . J Cell Biol 190 : 491 – 500 . 

  115. Washburn MP , Wolters D , Yates JR III. 2001 . Large‐scale analysis of the yeast proteome by multidimensional protein identification technology . Nat Biotechnol 19 : 242 – 247 . 

  116. Weil L , Timasheff SN . 1966 . The enzymic activity of trypsin autolysis products . Arch Biochem Biophys 116 : 252 – 254 . 

  117. Whitcomb DC , Lowe ME . 2007 . Human pancreatic digestive enzymes . Dig Dis Sci 52 : 1 – 17 . 

  118. Wiśniewski JR , Zougman A , Nagaraj N , Mann M . 2009 . Universal sample preparation method for proteome analysis . Nat Methods 6 : 359 – 362 . 

  119. Wright HT . 1977 . Secondary and conformational specificities of trypsin and chymotrypsin . Eur J Biochem 73 : 567 – 578 . 

  120. Yen C , Russell S , Mendoza AM , Meyer‐Arendt K , Sun S , Cios KJ , Ahn NG , Resing KA . 2006 . Improving sensitivity in shotgun proteomics using a peptide‐centric database with reduced complexity: Protease cleavage and SCX elution rules from data mining of MS/MS spectra . Anal Chem 78 : 1071 – 1084 . 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로