$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Comparative transcriptome profiling of freezing stress responsiveness in two contrasting Chinese cabbage genotypes, Chiifu and Kenshin

Genes & genomics, v.36 no.2, 2014년, pp.215 - 227  

Dong, Xiangshu ,  Im, Su-Bin ,  Lim, Yong-Pyo ,  Nou, Ill-Sup ,  Hur, Yoonkang

Abstract AI-Helper 아이콘AI-Helper

Freezing stress is a major factor affecting plant growth, crop productivity, and the geographical distribution of plants. To identify freezing-responsive genes in Brassica rapa, we analyzed transcriptome profiles of two contrasting inbred lines with different geographic origins, Chiifu and Kenshin, ...

참고문헌 (55)

  1. Cryobiology TJ Anchorodoguy 24 324 1987 10.1016/0011-2240(87)90036-8 Anchorodoguy TJ, Rudolph AS, Carpenter JF, Crowe JH (1987) Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24:324-331 

  2. Plant J MS Bae 36 652 2003 10.1046/j.1365-313X.2003.01907.x Bae MS, Cho EJ, Choi EY, Park OK (2003) Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J 36:652-663 

  3. BMC Genomics CE Bita 12 384 2011 10.1186/1471-2164-12-384 Bita CE, Zenoni S, Vriezen WH, Mariani C, Pezzotti M, Gerats T (2011) Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomator plants. BMC Genomics 12:384 

  4. Curr Opin Plant Biol J Browse 4 241 2001 10.1016/S1369-5266(00)00167-9 Browse J, Xin Z (2001) Temperature sensing and cold acclimation. Curr Opin Plant Biol 4:241-246 

  5. Plant Physiol J Capel 115 569 1997 10.1104/pp.115.2.569 Capel J, Jarillo JA, Salinas J, Martinez-Zapater JM (1997) Two homologous low-temperature-inducible genes from Arabidopsis encode highly hydrophobic proteins. Plant Physiol 115:569-576 

  6. J Exp Bot MA Carvallo 62 3807 2011 10.1093/jxb/err066 Carvallo MA, Pino MT, Jeknic Z, Zou C, Doherty CJ, Shiu SH, Chen THH, Thomashow MF (2011) A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana. J Exp Bot 62:3807-3819 

  7. Photosynth Res J Cavender-Bares 94 437 2007 10.1007/s11120-007-9215-8 Cavender-Bares J (2007) Chilling and freezing stress in live oaks (Quercus section Virentes): intra- and inter-specific variation in PSII sensitivity corresponds to latitude of origin. Photosynth Res 94:437-453 

  8. Plant Mol Biol CN Chen 49 633 2002 Chen CN, Chu CC, Zentella R, Pan SM, Ho THD (2002) AtHVA22 gene family in Arabidopsis: phylogenetic relationship, ABA and stress regulation, and tissue-specific expression. Plant Mol Biol 49:633-644 

  9. Plant Physiol QF Chen 148 304 2008 10.1104/pp.108.123331 Chen QF, Xiao S, Chye ML (2008) Overexpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 enhances freezing tolerance. Plant Physiol 148:304-315 

  10. Plant Cell Physiol Y Chiba 54 180 2013 10.1093/pcp/pcs164 Chiba Y, Mineta K, Hirai MY, Suzuki Y, Kanaya S, Takahashi H, Onouchi H, Yamaguchi J, Naito S (2013) Changes in mRNA stability associated with cold stress in Arabidopsis cells. Plant Cell Physiol 54:180-194 

  11. Methods Mol Biol V Chinnusamy 639 39 2010 10.1007/978-1-60761-702-0_3 Chinnusamy V, Zhu JK, Sunkar R (2010) Gene regulation during cold stress acclimation in plants. Methods Mol Biol 639:39-55 

  12. Plant Cell S Fowler 14 1675 2002 10.1105/tpc.003483 Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675-1690 

  13. J Exp Bot G Frank 60 3891 2009 10.1093/jxb/erp234 Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N (2009) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot 60:3891-3908 

  14. Proc Natl Acad Sci USA AK Garg 99 15898 2002 10.1073/pnas.252637799 Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in irce plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898-15903 

  15. Plant J E Goulas 47 720 2006 10.1111/j.1365-313X.2006.02821.x Goulas E, Schubert M, Kieselbach T, Kleczkowski LA, Gardestrom P, Schroder W, Hurry V (2006) The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature. Plant J 47:720-734 

  16. J Inetgr Plant Biol M Iordachescu 50 1223 2008 10.1111/j.1744-7909.2008.00736.x Iordachescu M, Imai R (2008) Trehalose biosynthesis in response to abiotic stresses. J Inetgr Plant Biol 50:1223-1229 

  17. Plant Physiol IC Jang 131 516 2003 10.1104/pp.007237 Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Choi YD, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and tranhalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance withoud stunting growth. Plant Physiol 131:516-524 

  18. Plant Physiol F Kaplan 136 4159 2004 10.1104/pp.104.052142 Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159-4168 

  19. Plant Physiol D Karlson 131 12 2003 10.1104/pp.014472 Karlson D, Imai R (2003) Conservation of the cold shock domain protein family in plants. Plant Physiol 131:12-15 

  20. Plant J Y Kawamura 36 141 2003 10.1046/j.1365-313X.2003.01864.x Kawamura Y, Uemura M (2003) Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. Plant J 36:141-154 

  21. Plant J J Kilian 50 347 2007 10.1111/j.1365-313X.2007.03052.x Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347-363 

  22. Plant Physiol H Kodama 105 601 1994 10.1104/pp.105.2.601 Kodama H, Hamada T, Horiguchi G, Nishimura M, Iba K (1994) Genetic enhancement of cold tolerance by expression of a gene for chloroplast omega-3-fatty-acid desaturase in transgenic tobacco. Plant Physiol 105:601-605 

  23. Funct Integr Genomic S Kumari 9 109 2009 10.1007/s10142-008-0088-5 Kumari S, Panjabi V, Kushwaha H, Sopory S, Singla-Pareek S, Pareek A (2009) Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L. Funct Integr Genomic 9:109-123 

  24. EMBO J H Lee 21 2692 2002 10.1093/emboj/21.11.2692 Lee H, Guo Y, Ohta M, Xiong LM, Stevenson B, Zhu JK (2002) LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J 21:2692-2702 

  25. Plant Cell BH Lee 17 3155 2005 10.1105/tpc.105.035568 Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155-3175 

  26. Mol Cells SC Lee 26 595 2008 10.1016/S1016-8478(23)14042-8 Lee SC, Lim MH, Kim JA, Lee SI, Kim JS, Jin M, Kwon SJ, Mun JH, Kim YK, Kim HU, Hur Y, Park BS (2008) Transcriptome analysis in Brassica rapa under abiotic stresses using Brassica 24K oligo microarray. Mol Cells 26:595-605 

  27. Genes Genom J Lee 35 265 2013 10.1007/s13258-013-0095-3 Lee J, Lim YP, Han CT, Nou IS, Hur Y (2013) Genome-wide expression profiles of contransting inbred lines of Chinese cabbage, Chiifu and Kenshin, under temperature stress. Genes Genom 35:265-281 

  28. Plant Signal Behav M Lissarre 5 948 2010 10.4161/psb.5.8.12135 Lissarre M, Ohta M, Sato A, Miura K (2010) Cold-responsive gene regulation during cold acclimation in plants. Plant Signal Behav 5:948-952 

  29. Plant J K Maruyama 38 982 2004 10.1111/j.1365-313X.2004.02100.x Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982-993 

  30. Plant Sci J Medina 180 3 2011 10.1016/j.plantsci.2010.06.019 Medina J, Catalá R, Salinas J (2011) The CBFs: three arabidopsis transcription factors to cold acclimate. Plant Sci 180:3-11 

  31. Planta JA Miranda 226 1411 2007 10.1007/s00425-007-0579-y Miranda JA, Avonce N, Suárez R, Thevelein JM, Van Dijck P, Iturriaga G (2007) A biosunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta 226:1411-1421 

  32. Proc Natl Acad Sci USA T Mizoguchi 93 765 1996 10.1073/pnas.93.2.765 Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K (1996) A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 93:765-769 

  33. Science ER Moellering 330 226 2010 10.1126/science.1191803 Moellering ER, Muthan B, Benning C (2010) Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science 330:226-228 

  34. Plant Mol Biol AF Monroy 64 409 2007 10.1007/s11103-007-9161-z Monroy AF, Dryanova A, Malette B, Oren DH, Ridha Farajalla M, Liu W, Danyluk J, Ubayasena LW, Kane K, Scoles GJ, Sarhan F, Gulick PJ (2007) Regulatory gene candidates and gene expression analysis of cold acclimation in winter and spring wheat. Plant Mol Biol 64:409-423 

  35. Plant Physiol A Nishizawa 147 1251 2008 10.1104/pp.108.122465 Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251-1263 

  36. Funct Intergr Genomics Y Oono 6 212 2006 10.1007/s10142-005-0014-z Oono Y, Seki M, Satou M, Iida K, Akiyama K, Sakurai T, Fujita M, Yamaguchi-Shinozaki K, Shinozaki K (2006) Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Funct Intergr Genomics 6:212-234 

  37. Plant Physiol Biochem M Partridge 47 796 2009 10.1016/j.plaphy.2009.04.005 Partridge M, Murphy DJ (2009) Roles of a membrane-bound caleosin and putative peroxygenase in biotic and abiotic stress responses in Arabidopsis. Plant Physiol Biochem 47:796-806 

  38. BMC Genomics SJ Robinson 9 434 2008 10.1186/1471-2164-9-434 Robinson SJ, Parkin IA (2008) Differential SAGE analysis in Arabidopsis uncovers increased transcriptome complexity in response to low temperature. BMC Genomics 9:434 

  39. Curr Genomics GS Sanghera 12 30 2011 10.2174/138920211794520178 Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12:30-43 

  40. BioEssays P Sharma 27 1048 2005 10.1002/bies.20307 Sharma P, Sharma N, Deswal R (2005) The molecular biology of the low-temperature response in plants. BioEssays 27:1048-1059 

  41. Plant Mol Biol N Sharma 63 171 2007 10.1007/s11103-006-9080-4 Sharma N, Cram D, Huebert T, Zhou N, Parkin IA (2007) Exploiting the wild crucifer Thlaspi arvense to identify conserved and novel genes expressed during a plant’s response to cold stress. Plant Mol Biol 63:171-184 

  42. Curr Opin Plant Biol K Shinozaki 3 217 2000 10.1016/S1369-5266(00)00067-4 Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217-223 

  43. Plant Physiol T Taji 135 1697 2004 10.1104/pp.104.039909 Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697-1709 

  44. Annu Rev Plant Physiol MF Thomashow 50 571 1999 10.1146/annurev.arplant.50.1.571 Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol 50:571-599 

  45. Plant Physiol MF Thomashow 154 571 2010 10.1104/pp.110.161794 Thomashow MF (2010) Molecular basis of plant cold climation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571-577 

  46. Plant J JT Vogel 41 195 2005 10.1111/j.1365-313X.2004.02288.x Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195-211 

  47. Plant Biotechnol J MO Winfield 8 749 2010 10.1111/j.1467-7652.2010.00536.x Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J 8:749-771 

  48. Proc Natl Acad Sci USA Z Xin 95 7799 1998 10.1073/pnas.95.13.7799 Xin Z, Browse J (1998) eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci USA 95:7799-7804 

  49. Plant Cell Environ Z Xin 23 893 2000 10.1046/j.1365-3040.2000.00611.x Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893-902 

  50. Genome Biol X Zhang 9 11 R165 2008 10.1186/gb-2008-9-11-r165 Zhang X, Byrnes JK, Gal TS, Li WH, Borevitz JO (2008) Whole genome transcriptome polymorphisms in Arabidopsis thaliana. Genome Biol 9(11):R165 

  51. PLoS ONE T Zhang 7 8 e43274 2012 10.1371/journal.pone.0043274 Zhang T, Zhao XQ, Wang WS, Pan YJ, Huang LY, Liu XY, Zong Y, Zhu LH, Yang DC, Fu BY (2012) Comparative transcriptome profiling of chilling atress responsiveness in two xontrasting rice fenotypes. PLoS ONE 7(8):e43274 

  52. New Phytol Y Zhen 177 419 2008 10.1111/j.1469-8137.2007.02262.x Zhen Y, Ungerer MC (2008) Clinal variation in freezing tolerance among natural accessions of Arabidopsis thaliana. New Phytol 177:419-427 

  53. Crit Rev Biotechnol MQ Zhou 31 186 2011 10.3109/07388551.2010.505910 Zhou MQ, Shen C, Wu LH, Tang KX, Lin J (2011) CBF-dependent signaling pathway: a key responder to low temperature stress in plants. Crit Rev Biotechnol 31:186-192 

  54. Curr Opin Plant Biol J Zhu 10 290 2007 10.1016/j.pbi.2007.04.010 Zhu J, Dong CH, Zhu JK (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10:290-295 

  55. Plant Cell Environ E Zuther 35 1860 2012 10.1111/j.1365-3040.2012.02522.x Zuther E, Schulz E, Childs LH, Hincha DK (2012) Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. Plant Cell Environ 35:1860-1878 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로