$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Fracture toughness of graphene 원문보기

Nature communications, v.5, 2014년, pp.3782 -   

Zhang, Peng (Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA) ,  Ma, Lulu (Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA) ,  Fan, Feifei (Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA) ,  Zeng, Zhi (Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA) ,  Peng, Cheng (Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA) ,  Loya, Phillip E. (Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA) ,  Liu, Zheng (1] Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA [2] School of Materials Science and Engineering, School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore) ,  Gong, Yongji (Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA) ,  Zhang, Jiangnan (Department of Materials Science and NanoEngineer) ,  Zhang, Xingxiang ,  Ajayan, Pulickel M. ,  Zhu, Ting ,  Lou, Jun

Abstract AI-Helper 아이콘AI-Helper

Perfect graphene is believed to be the strongest material. However, the useful strength of large-area graphene with engineering relevance is usually determined by its fracture toughness, rather than the intrinsic strength that governs a uniform breaking of atomic bonds in perfect graphene. To date, ...

참고문헌 (42)

  1. Nat. Mater. AK Geim 6 183 2007 10.1038/nmat1849 Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183-191 (2007). 

  2. Rev. Mod. Phys. AH Castro Neto 81 109 2009 10.1103/RevModPhys.81.109 Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109-162 (2009). 

  3. Nano Lett. AA Balandin 8 902 2008 10.1021/nl0731872 Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902-907 (2008). 

  4. Phys. Rev. B QZ Zhao 65 144105 2002 10.1103/PhysRevB.65.144105 Zhao, Q. Z., Nardelli, M. B. & Bernholc, J. Ultimate strength of carbon nanotubes: a theoretical study. Phys. Rev. B 65, 144105 (2002). 

  5. Compos. Sci. Technol. RJ Young 72 1459 2012 10.1016/j.compscitech.2012.05.005 Young, R. J., Kinloch, I. A., Gong, L. & Novoselov, K. S. The mechanics of graphene nanocomposites: a review. Compos. Sci. Technol. 72, 1459-1476 (2012). 

  6. Nat. Commun. Y Kim 4 2114 2013 10.1038/ncomms3114 Kim, Y. et al. Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites. Nat. Commun. 4, 2114 (2013). 

  7. Sci. Rep. YC Yang 3 2086 2013 10.1038/srep02086 Yang, Y. C., Rigdon, W., Huang, X. Y. & Li, X. D. Enhancing graphene reinforcing potential in composites by hydrogen passivation induced dispersion. Sci. Rep. 3, 2086 (2013). 

  8. Nature KS Kim 457 706 2009 10.1038/nature07719 Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706-710 (2009). 

  9. Prog. Mater. Sci. T Zhu 55 710 2010 10.1016/j.pmatsci.2010.04.001 Zhu, T. & Li, J. Ultra-strength materials. Prog. Mater. Sci. 55, 710-757 (2010). 

  10. Phil. Trans. R Soc. London A AA Griffith 221 163 1921 10.1098/rsta.1921.0006 Griffith, A. A. The phenomena of rupture and flow in solids. Phil. Trans. R Soc. London A 221, 163-198 (1921). 

  11. 10.1017/CBO9780511623127 Lawn, B. Fracture of Brittle Solids 2nd edn Cambridge Univ. Press (1993). 

  12. Nano Lett. H Zhao 9 3012 2009 10.1021/nl901448z Zhao, H., Min, K. & Aluru, N. R. Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett. 9, 3012-3015 (2009). 

  13. Carbon QX Pei 48 898 2010 10.1016/j.carbon.2009.11.014 Pei, Q. X., Zhang, Y. W. & Shenoy, V. B. A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon 48, 898-904 (2010). 

  14. Science R Grantab 330 946 2010 10.1126/science.1196893 Grantab, R., Shenoy, V. B. & Ruoff, R. S. Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330, 946-948 (2010). 

  15. Nat. Mater. Y Wei 11 759 2012 10.1038/nmat3370 Wei, Y. et al. The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene. Nat. Mater. 11, 759-763 (2012). 

  16. Chem. Phys. Lett. SS Terdalkar 494 218 2010 10.1016/j.cplett.2010.05.090 Terdalkar, S. S. et al. Nanoscale fracture in graphene. Chem. Phys. Lett. 494, 218-222 (2010). 

  17. Phys. Rev. E MJB Moura 88 032405 2013 10.1103/PhysRevE.88.032405 Moura, M. J. B. & Marder, M. Tearing of free-standing graphene. Phys. Rev. E 88, 032405 (2013). 

  18. Comp. Mater. Sci. MQ Le 69 381 2013 10.1016/j.commatsci.2012.11.057 Le, M. Q. & Batra, R. C. Single-edge crack growth in graphene sheets under tension. Comp. Mater. Sci. 69, 381-388 (2013). 

  19. Nano Lett. K Kim 12 293 2012 10.1021/nl203547z Kim, K. et al. Ripping graphene: preferred directions. Nano Lett. 12, 293-297 (2012). 

  20. Nano Lett. T Zhang 12 4605 2012 10.1021/nl301908b Zhang, T., Li, X. Y., Kadkhodaei, S. & Gao, H. J. Flaw insensitive fracture in nanocrystalline graphene. Nano Lett. 12, 4605-4610 (2012). 

  21. Appl. Phys. Lett. A Cao 102 071902 2013 10.1063/1.4793088 Cao, A. & Qu, J. Atomistic simulation study of brittle failure in nanocrystalline graphene under uniaxial tension. Appl. Phys. Lett. 102, 071902 (2013). 

  22. J. Mech. Phys. Solids J Wu 61 1421 2013 10.1016/j.jmps.2013.01.008 Wu, J. & Wei, Y. Grain misorientation and grain-boundary rotation dependent mechanical properties in polycrystalline graphene. J. Mech. Phys. Solids 61, 1421-1432 (2013). 

  23. Science C Lee 321 385 2008 10.1126/science.1157996 Lee, C., Wei, X. D., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385-388 (2008). 

  24. Science GH Lee 340 1073 2013 10.1126/science.1235126 Lee, G. H. et al. High-strength chemical-vapor-deposited graphene and grain boundaries. Science 340, 1073-1076 (2013). 

  25. Nature JC Meyer 446 60 2007 10.1038/nature05545 Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60-63 (2007). 

  26. ACS Nano S Bertolazzi 5 9703 2011 10.1021/nn203879f Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2 . ACS Nano 5, 9703-9709 (2011). 

  27. Phys. Rev. Lett. AC Ferrari 97 187401 2006 10.1103/PhysRevLett.97.187401 Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006). 

  28. Carbon P Nemes-Incze 46 1435 2008 10.1016/j.carbon.2008.06.022 Nemes-Incze, P., Osvath, Z., Kamaras, K. & Biro, L. P. Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 46, 1435-1442 (2008). 

  29. J. Microelectromech. Sys. Y Ganesan 19 675 2010 10.1109/JMEMS.2010.2046014 Ganesan, Y. et al. Development and application of a novel microfabricated device for the in situ tensile testing of 1-D nanomaterials. J. Microelectromech. Sys. 19, 675-682 (2010). 

  30. Adv. Funct. Mater. JN Zhang 22 4070 2012 10.1002/adfm.201200593 Zhang, J. N., Loya, P., Peng, C., Khabashesku, V. & Lou, J. Quantitative in situ mechanical characterization of the effects of chemical functionalization on individual carbon nanofibers. Adv. Funct. Mater. 22, 4070-4077 (2012). 

  31. Small C Peng 8 1889 2012 10.1002/smll.201101911 Peng, C., Zhan, Y. & Lou, J. Size dependent fracture modes transition in copper nanowires. Small 8, 1889-1894 (2012). 

  32. Exp. Mech. Y Lu 50 47 2010 10.1007/s11340-009-9222-0 Lu, Y., Ganesan, Y. & Lou, J. A multi-step method for in situ mechanical characterization of 1-D nanostructures using a novel micromechanical device. Exp. Mech. 50, 47-54 (2010). 

  33. Phys. Rev. B F Liu 76 064120 2007 10.1103/PhysRevB.76.064120 Liu, F., Ming, P. M. & Li, J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 76, 064120 (2007). 

  34. Science CO Girit 323 1705 2009 10.1126/science.1166999 Girit, C. O. et al. Graphene at the edge: stability and dynamics. Science 323, 1705-1708 (2009). 

  35. Nat. Commun. HI Rasool 4 2811 2013 10.1038/ncomms3811 Rasool, H. I., Ophus, C., Klug, W. S., Zettl, A. & Gimzewski, J. K. Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nat. Commun. 4, 2811 (2013). 

  36. J. Mech. Phys. Solids S Huang 57 840 2009 10.1016/j.jmps.2009.01.006 Huang, S., Zhang, S. L., Belytschko, T., Terdalkar, S. S. & Zhu, T. Mechanics of nanocrack: fracture, dislocation emission, and amorphization. J. Mech. Phys. Solids 57, 840-850 (2009). 

  37. Proc. R. Soc. London T Zhu 462 1741 2006 10.1098/rspa.2005.1567 Zhu, T., Li, J. & Yip, S. Atomistic characterization of three-dimensional lattice trapping barriers to brittle fracture. Proc. R. Soc. London 462, 1741-1761 (2006). 

  38. Phys. Rev. Lett. T Zhu 93 205504 2004 10.1103/PhysRevLett.93.205504 Zhu, T., Li, J. & Yip, S. Atomistic configurations and energetics of crack extension in silicon. Phys. Rev. Lett. 93, 205504 (2004). 

  39. Proc. R. Soc. London AH Cottrell 282 2 1964 10.1098/rspa.1964.0206 Cottrell, A. H. Strong solids. Proc. R. Soc. London 282, 2-9 (1964). 

  40. J. Comput. Phys. S Plimpton 117 1 1995 10.1006/jcph.1995.1039 Plimpton, S. Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1-19 (1995). 

  41. J. Phys. Condens. Matter. DW Brenner 14 783 2002 10.1088/0953-8984/14/4/312 Brenner, D. W. et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter. 14, 783-802 (2002). 

  42. Phys. Rev. B T Belytschko 65 235430 2002 10.1103/PhysRevB.65.235430 Belytschko, T., Xiao, S. P., Schatz, G. C. & Ruoff, R. S. Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235430 (2002). 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로