$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Augmentation of NAD + by NQO1 attenuates cisplatin-mediated hearing impairment 원문보기

Cell death & disease, v.5, 2014년, pp.e1292 -   

Kim, H-J (Center for Metabolic Function Regulation, Department of Microbiology, Wonkwang University School of Medicine , Jeonbuk, Republic of Korea) ,  Oh, G-S (Center for Metabolic Function Regulation, Department of Microbiology, Wonkwang University School of Medicine , Jeonbuk, Republic of Korea) ,  Shen, A (Center for Metabolic Function Regulation, Department of Microbiology, Wonkwang University School of Medicine , Jeonbuk, Republic of Korea) ,  Lee, S-B (Center for Metabolic Function Regulation, Department of Microbiology, Wonkwang University School of Medicine , Jeonbuk, Republic of Korea) ,  Choe, S-K (Center for Metabolic Function Regulation, Department of Microbiology, Wonkwang University School of Medicine , Jeonbuk, Republic of Korea) ,  Kwon, K-B (Center for Metabolic Function Regulation, Department of Microbiology, Wonkwang University School of Medicine ,) ,  Lee, S ,  Seo, K-S ,  Kwak, T H ,  Park, R ,  So, H-S

Abstract AI-Helper 아이콘AI-Helper

Cisplatin (cis-diaminedichloroplatinum-II) is an extensively used chemotherapeutic agent, and one of its most adverse effects is ototoxicity. A number of studies have demonstrated that these effects are related to oxidative stress and DNA damage. However, the precise mechanism underlying cisplatin-a...

참고문헌 (60)

  1. 1Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs . Nat Rev Drug Discov 2005 ; 4 : 307 –320. 15789122 

  2. 2Rybak LP, Somani S. Ototoxicity Amelioration by protective agents. Ann N Y Acad Sci 1999 ; 884 : 143 –151. 10842591 

  3. 3Deavall DG, Martin EA, Horner JM, Roberts R. Drug-induced oxidative stress and toxicity . J Toxicol 2012 ; 2012 : 645460 . 22919381 

  4. 4Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies . Kidney Int 2008 ; 73 : 994 –1007. 18272962 

  5. 5Kim HJ, Lee JH, Kim SJ, Oh GS, Moon HD, Kwon KB et al. Roles of NADPH oxidases in cisplatin-induced reactive oxygen species generation and ototoxicity . J Neurosci 2010 ; 30 : 3933 –3946. 20237264 

  6. 6Jiang M, Yi X, Hsu S, Wang CY, Dong Z. Role of p53 in cisplatin-induced tubular cell apoptosis: dependence on p53 transcriptional activity . Am J Physiol Renal Physiol 2004 ; 287 : F1140 –F1147. 15315938 

  7. 7So H, Kim H, Lee JH, Park C, Kim Y, Kim E et al. Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-kappaB . J Assoc Res Otolaryngol 2007 ; 8 : 338 –355. 17516123 

  8. 8Kim DH, Jung YJ, Lee JE, Lee AS, Kang KP, Lee S et al. SIRT1 activation by resveratrol ameliorates cisplatin-induced renal injury through deacetylation of p53 . Am J Physiol Renal Physiol 2011 ; 301 : F427 –F435. 21593185 

  9. 9Oh GS, Kim HJ, Choi JH, Shen A, Choe SK, Karna A et al. Pharmacological activation of NQO1 increases NAD levels and attenuates cisplatin-mediated acute kidney injury in mice . Kidney Int 2014 ; 85 : 547 –560. 24025646 

  10. 10Oka S, Hsu CP, Sadoshima J. Regulation of cell survival and death by pyridine nucleotides . Circ Res 2012 ; 111 : 611 –627. 22904041 

  11. 11Abdellatif M. Sirtuins and pyridine nucleotides . Circ Res 2012 ; 111 : 642 –656. 22904043 

  12. 12Imai S, Kiess W. Therapeutic potential of SIRT1 and NAMPT-mediated NAD biosynthesis in type 2 diabetes . Front Biosci (Landmark Ed) 2009 ; 14 : 2983 –2995. 19273250 

  13. 13Belenky P, Bogan KL, Brenner C. NAD+ metabolism in health and disease . Trends Biochem Sci 2007 ; 32 : 12 –19. 17161604 

  14. 14Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt . Dev Cell 2008 ; 14 : 661 –673. 18477450 

  15. 15Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis . EMBO J 2007 ; 26 : 3169 –3179. 17581637 

  16. 16Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function . Biochem J 2007 ; 404 : 1 –13. 17447894 

  17. 17Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W et al. Mammalian SIRT1 represses forkhead transcription factors . Cell 2004 ; 116 : 551 –563. 14980222 

  18. 18Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase . Cell 2001 ; 107 : 149 –159. 11672523 

  19. 19Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase . EMBO J 2004 ; 23 : 2369 –2380. 15152190 

  20. 20Pillai JB, Isbatan A, Imai S, Gupta MP. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity . J Biol Chem 2005 ; 280 : 43121 –43130. 16207712 

  21. 21Virag L, Szabo C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors . Pharmacol Rev 2002 ; 54 : 375 –429. 12223530 

  22. 22Mukhopadhyay P, Horvath B, Kechrid M, Tanchian G, Rajesh M, Naura AS et al. Poly(ADP-ribose) polymerase-1 is a key mediator of cisplatin-induced kidney inflammation and injury . Free Radic Biol Med 2011 ; 51 : 1774 –1788. 21884784 

  23. 23Shino Y, Itoh Y, Kubota T, Yano T, Sendo T, Oishi R. Role of poly(ADP-ribose)polymerase in cisplatin-induced injury in LLC-PK1 cells . Free Radic Biol Med 2003 ; 35 : 966 –977. 14556861 

  24. 24Ross D, Kepa JK, Winski SL, Beall HD, Anwar A, Siegel D. NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms . Chem Biol Interact 2000 ; 129 : 77 –97. 11154736 

  25. 25Gaikwad A, Long DJII, Stringer JL, Jaiswal AK. In vivo role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the regulation of intracellular redox state and accumulation of abdominal adipose tissue . J Biol Chem 2001 ; 276 : 22559 –22564. 11309386 

  26. 26Pazdro R, Burgess JR. The antioxidant 3H-1,2-dithiole-3-thione potentiates advanced glycation end-product-induced oxidative stress in SH-SY5Y cells . Exp Diabetes Res 2012 ; 2012 : 137607 . 22675339 

  27. 27Jones CIIII, Zhu H, Martin SF, Han Z, Li Y, Alevriadou BR. Regulation of antioxidants and phase 2 enzymes by shear-induced reactive oxygen species in endothelial cells . Ann Biomed Eng 2007 ; 35 : 683 –693. 17340195 

  28. 28Moscovitz O, Tsvetkov P, Hazan N, Michaelevski I, Keisar H, Ben-Nissan G et al. A mutually inhibitory feedback loop between the 20S proteasome and its regulator . NQO1. Mol Cell 2012 ; 47 : 76 –86. 22793692 

  29. 29Haefeli RH, Erb M, Gemperli AC, Robay D, Courdier Fruh I, Anklin C et al. NQO1-dependent redox cycling of idebenone: effects on cellular redox potential and energy levels . PLoS One 2011 ; 6 : e17963 . 21483849 

  30. 30Huang X, Dong Y, Bey EA, Kilgore JA, Bair JS, Li LS et al. An NQO1 substrate with potent antitumor activity that selectively kills by PARP1-induced programmed necrosis . Cancer Res 2012 ; 72 : 3038 –3047. 22532167 

  31. 31Pardee AB, Li YZ, Li CJ. Cancer therapy with beta-lapachone . Curr Cancer Drug Targets 2002 ; 2 : 227 –242. 12188909 

  32. 32Li LS, Bey EA, Dong Y, Meng J, Patra B, Yan J et al. Modulating endogenous NQO1 levels identifies key regulatory mechanisms of action of beta-lapachone for pancreatic cancer therapy . Clin Cancer Res 2011 ; 17 : 275 –285. 21224367 

  33. 33Planchon SM, Wuerzberger S, Frydman B, Witiak DT, Hutson P, Church DR et al. Beta-lapachone-mediated apoptosis in human promyelocytic leukemia (HL-60) and human prostate cancer cells: a p53-independent response . Cancer Res 1995 ; 55 : 3706 –3711. 7641180 

  34. 34Hwang JH, Kim DW, Jo EJ, Kim YK, Jo YS, Park JH et al. Pharmacological stimulation of NADH oxidation ameliorates obesity and related phenotypes in mice . Diabetes 2009 ; 58 : 965 –974. 19136651 

  35. 35Kim SY, Jeoung NH, Oh CJ, Choi YK, Lee HJ, Kim HJ et al. Activation of NAD(P)H:quinone oxidoreductase 1 prevents arterial restenosis by suppressing vascular smooth muscle cell proliferation . Circ Res 2009 ; 104 : 842 –850. 19229058 

  36. 36Kim YH, Hwang JH, Noh JR, Gang GT, Kim do H, Son HY et al. Activation of NAD(P)H:quinone oxidoreductase ameliorates spontaneous hypertension in an animal model via modulation of eNOS activity . Cardiovasc Res 2011 ; 91 : 519 –527. 21502369 

  37. 37Kim YH, Hwang JH, Noh JR, Gang GT, Tadi S, Yim YH et al. Prevention of salt-induced renal injury by activation of NAD(P)H:quinone oxidoreductase 1, associated with NADPH oxidase. Free . Radic Biol Med 2012 ; 52 : 880 –888. 

  38. 38Lee JS, Park AH, Lee SH, Lee SH, Kim JH, Yang SJ et al. Beta-lapachone, a modulator of NAD metabolism, prevents health declines in aged mice . PLoS One 2012 ; 7 : e47122 . 23071729 

  39. 39David KK, Andrabi SA, Dawson TM, Dawson VL. Parthanatos, a messenger of death . Front Biosci (Landmark Ed) 2009 ; 14 : 1116 –1128. 19273119 

  40. 40Hermeking H. The miR-34 family in cancer and apoptosis . Cell Death Differ 2010 ; 17 : 193 –199. 19461653 

  41. 41Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis . Proc Natl Acad Sci USA 2008 ; 105 : 13421 –13426. 18755897 

  42. 42de Jongh FE, van Veen RN, Veltman SJ, de Wit R, van der Burg ME, van den Bent MJ et al. Weekly high-dose cisplatin is a feasible treatment option: analysis on prognostic factors for toxicity in 400 patients . Br J Cancer 2003 ; 88 : 1199 –1206. 12698184 

  43. 43Bokemeyer C, Berger CC, Hartmann JT, Kollmannsberger C, Schmoll HJ, Kuczyk MA et al. Analysis of risk factors for cisplatin-induced ototoxicity in patients with testicular cancer . Br J Cancer 1998 ; 77 : 1355 –1362. 9579846 

  44. 44Knight KR, Kraemer DF, Neuwelt EA. Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development . J Clin Oncol 2005 ; 23 : 8588 –8596. 16314621 

  45. 45Krishnakumar R, Kraus WL. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets . Mol Cell 2010 ; 39 : 8 –24. 20603072 

  46. 46Goodwin PM, Lewis PJ, Davies MI, Skidmore CJ, Shall S. The effect of gamma radiation and neocarzinostatin on NAD and ATP levels in mouse leukaemia cells . Biochim Biophys Acta 1978 ; 543 : 576 –582. 214144 

  47. 47Skidmore CJ, Davies MI, Goodwin PM, Halldorsson H, Lewis PJ, Shall S et al. The involvement of poly(ADP-ribose) polymerase in the degradation of NAD caused by gamma-radiation and N-methyl-N-nitrosourea . Eur J Biochem 1979 ; 101 : 135 –142. 228934 

  48. 48Canto C, Auwerx J. NAD+ as a signaling molecule modulating metabolism . Cold Spring Harb Symp Quant Biol 2012 ; 76 : 291 –298. 

  49. 49Hasegawa K, Wakino S, Yoshioka K, Tatematsu S, Hara Y, Minakuchi H et al. Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function . J Biol Chem 2010 ; 285 : 13045 –13056. 20139070 

  50. 50Revollo JR, Li X. The ways and means that fine tune Sirt1 activity . Trends Biochem Sci 2013 ; 38 : 160 –167. 23394938 

  51. 51Molitoris BA, Dagher PC, Sandoval RM, Campos SB, Ashush H, Fridman E et al. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury . J Am Soc Nephrol 2009 ; 20 : 1754 –1764. 19470675 

  52. 52Kruse JP, Gu W. Modes of p53 regulation . Cell 2009 ; 137 : 609 –622. 19450511 

  53. 53Tang Y, Zhao W, Chen Y, Zhao Y, Gu W. Acetylation is indispensable for p53 activation . Cell 2008 ; 133 : 612 –626. 18485870 

  54. 54Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A et al. Negative control of p53 by Sir2alpha promotes cell survival under stress . Cell 2001 ; 107 : 137 –148. 11672522 

  55. 55Brooks CL, Gu W. The impact of acetylation and deacetylation on the p53 pathway . Protein Cell 2011 ; 2 : 456 –462. 21748595 

  56. 56Neumann M, Naumann M. Beyond IkappaBs: alternative regulation of NF-kappaB activity . FASEB J 2007 ; 21 : 2642 –2654. 17431096 

  57. 57Yoshizaki T, Milne JC, Imamura T, Schenk S, Sonoda N, Babendure JL et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes . Mol Cell Biol 2009 ; 29 : 1363 –1374. 19103747 

  58. 58Chen LF, Greene WC. Regulation of distinct biological activities of the NF-kappaB transcription factor complex by acetylation . J Mol Med (Berl) 2003 ; 81 : 549 –557. 12920522 

  59. 59Jung YJ, Lee JE, Lee AS, Kang KP, Lee S, Park SK et al. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-kappaB p65 subunit and cytotoxicity in renal proximal tubule cells . Biochem Biophys Res Commun 2012 ; 419 : 206 –210. 22330808 

  60. 60Gang GT, Kim YH, Noh JR, Kim KS, Jung JY, Shong M et al. Protective role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in cisplatin-induced nephrotoxicity . Toxicol Lett 2013 ; 221 : 165 –175. 23831944 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로