$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Phylogenetic conservatism in plant phenology 원문보기

The Journal of ecology, v.101 no.6, 2013년, pp.1520 - 1530  

Davies, T. Jonathan (Department of Biology, McGill University, Montreal, QC, Canada) ,  Wolkovich, Elizabeth M. (Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada) ,  Kraft, Nathan J. B. (Department of Biology, University of Maryland, College Park, MD, 20742, USA) ,  Salamin, Nicolas (Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland) ,  Allen, Jenica M. (Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA) ,  Ault, Toby R. (National Center for Atmospheric Research, Boulder, CO, USA) ,  Betancourt, Julio L. (U.S. Geological Survey, Reston, VA, USA) ,  Bolmgren, Kjell (Theoretical Population Ecology and Evolution, Lund University, Lund, Sweden) ,  Cleland, Elsa E. (Ecology, Behavior & Evolution Section, University of California San Diego, La Jolla, CA, 92103, USA) ,  Cook, Benjamin I. (NASA Goddard Institute for Space Studies, New York, NY, USA) ,  Crimmins, Theresa M. (USA National Phenology Network, Tucson, AZ, USA) ,  Mazer, Susan J. (Department of Ecology, Evolution and Marine Biology, University of California –) ,  McCabe, Gregory J. (Santa Barbara, Santa Barbara, CA 93106, USA) ,  Pau, Stephanie (U.S. Geological Survey, Denver, CO, USA) ,  Regetz, Jim (Department o) ,  Schwartz, Mark D. ,  Travers, Steven E. ,  Bonser, Stephen

Abstract

SummaryPhenological events – defined points in the life cycle of a plant or animal – have been regarded as highly plastic traits, reflecting flexible responses to various environmental cues.The ability of a species to track, via shifts in phenological events, the abiotic environment through time might dictate its vulnerability to future climate change. Understanding the predictors and drivers of phenological change is therefore critical.Here, we evaluated evidence for phylogenetic conservatism – the tendency for closely related species to share similar ecological and biological attributes – in phenological traits across flowering plants. We aggregated published and unpublished data on timing of first flower and first leaf, encompassing ˜4000 species at 23 sites across the Northern Hemisphere. We reconstructed the phylogeny for the set of included species, first, using the software program Phylomatic, and second, from DNA data. We then quantified phylogenetic conservatism in plant phenology within and across sites.We show that more closely related species tend to flower and leaf at similar times. By contrasting mean flowering times within and across sites, however, we illustrate that it is not the time of year that is conserved, but rather the phenological responses to a common set of abiotic cues.Our findings suggest that species cannot be treated as statistically independent when modelling phenological responses.Synthesis. Closely related species tend to resemble each other in the timing of their life‐history events, a likely product of evolutionarily conserved responses to environmental cues. The search for the underlying drivers of phenology must therefore account for species' shared evolutionary histories.

주제어

참고문헌 (76)

  1. Ackerly , D.D. ( 2009 ) Phylogenetic Methods in Ecology. Encyclopedia of Life Sciences . John Wiley & Sons Ltd , Chichester . 

  2. Blomberg , S.P. , Garland , T. & Ives , A.R. ( 2003 ) Testing for phylogenetic signal in comparative data: behavioral traits are more labile . Evolution , 57 , 717 – 745 . 

  3. Bolmgren , K. & Cowan , P.D. ( 2008 ) Time‐size tradeoffs: a phylogenetic comparative study of flowering time, plant height and seed mass in a north‐temperate flora . Oikos , 117 , 424 – 429 . 

  4. Brearley , F.Q. , Proctor , J. , Suriantata ? , Nagy , L. , Dalrymple , G. & Voysey , B.C. ( 2007 ) Reproductive phenology over a 10‐year period in a lowland evergreen rain forest of central Borneo . Journal of Ecology , 95 , 828 – 839 . 

  5. Bremer , K. ( 1992 ) Ancestral areas: a cladistic reinterpretation of the center of origin concept . Systematic Biology , 41 , 436 – 445 . 

  6. Brooks , D.R. , Mayden , R.L. & McLennan , D.A. ( 1992 ) Phylogeny and biodiversity: conserving our evolutionary legacy . Trends in Ecology & Evolution , 7 , 55 – 59 . 

  7. Burkle , L.A. , Marlin , J.C. & Knight , T.M. ( 2013 ) Plant‐pollinator interactions over 120?years: loss of species, co‐occurrence and function . Science , 339 , 1611 – 1615 . 

  8. Chamarro , L. & Sans , F.X. ( 2010 ) Life‐history variation in agricultural and wild populations of Erucastrum nasturtiifolium (Brassicaceae) . Flora , 205 , 26 – 36 . 

  9. Chazdon , R.L. , Careaga , S. , Webb , C. & Vargas , O. ( 2003 ) Community and phylogenetic structure of reproductive traits of woody species in wet tropical forests . Ecological Monographs , 73 , 331 – 348 . 

  10. Chuine , I. ( 2010 ) Why does phenology drive species distribution? Philosophical Transactions of the Royal Society B , 365 , 3149 – 3160 . 

  11. Cleland , E.E. , Chuine , I. , Menzel , A. , Mooney , H.A. & Schwartz , M.D. ( 2007 ) Shifting plant phenology in response to global change . Trends in Ecology & Evolution , 22 , 357 – 365 . 

  12. Cook , B.I. , Wolkovich , E.M. , Davies , T.J. , Ault , T.R. , Betancourt , J.L. , Allen , ? et?al . ( 2012 ) Sensitivity of spring phenology to warming across temporal and spatial climate gradients: comparison of two independent databases . Ecosystems , 15 , 1283 – 1294 . 

  13. Davies , T.J. , Kraft , N.J.B. , Salamin , N. & Wolkovitch , E.M. ( 2012 ) Incompletely resolved phylogenetic trees inflate estimates of phylogenetic conservatism . Ecology , 93 , 242 – 247 . 

  14. Davis , C.C. , Willis , C.G. , Primack , R.B. & Miller‐Rushing , A.J. ( 2010 ) The importance of phylogeny to the study of phenological response to global climate change . Philosophical Transactions of the Royal Society B , 365 , 3201 – 3213 . 

  15. De Jong , G. ( 2005 ) Evolution of phenotypic plasticity: patterns of plasticity and the emergence of ecotypes . New Phytologist , 166 , 101 – 118 . 

  16. Debussche , M. , Garnier , E. & Thompson , J.D. ( 2004 ) Exploring the causes of variation in phenology and morphology in Mediterranean geophytes : a genus‐wide study of Cyclamen L . Botanical Journal of the Linnean Society , 145 , 469 – 484 . 

  17. Drummond , A.J. , Suchard , M.A. , Xie , D. & Rambaut , A. ( 2012 ) Bayesian phylogenetics with BEAUti and the BEAST 1.7 . Molecular Biology and Evolution , 29 , 1969 – 1973 . 

  18. Exner , E. & Zabala , J.M. ( 2010 ) Variations in flowering phenology and reproductive success in Setaria lachnea . Agrociencia , 44 , 779 – 789 . 

  19. Felsenstein , J. ( 1985 ) Phylogenies and the comparative method . The American Naturalist , 125 , 1 – 15 . 

  20. Franks , S.J. , Sim , S. & Weis , A.E. ( 2007 ) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation . Proceedings of the National Academy of Sciences , 104 , 1278 – 1282 . 

  21. Freckleton , R.P. , Harvey , P.H. & Pagel , M. ( 2002 ) Phylogenetic analysis and comparative data: a test and review of evidence . The American Naturalist , 160 , 712 – 726 . 

  22. Gordo , O. & Sanz , J.J. ( 2009 ) Long‐term temporal changes of plant phenology in the Western Mediterranean . Global Change Biology , 15 , 1930 – 1948 . 

  23. Harvey , P.H. & Pagel , M.D. ( 1991 ) The Comparative Method in Evolutionary Biology . Oxford University Press , Oxford . 

  24. Harvey , P.H. , Read , A.F. & Nee , S. ( 1995 ) Why ecologists need to be phylogenetically challenged . Journal of Ecology , 83 , 535 – 536 . 

  25. Jentsch , A. , Kreyling , J. , Boettcher‐Treschkow , J. & Beierkuhnlein , C. ( 2009 ) Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species . Global Change Biology , 15 , 837 – 849 . 

  26. Jia , P. , Bayaerta , T. , Li , X. & Du , G. ( 2011 ) Relationships between flowering phenology and functional traits in eastern Tibet alpine meadow . Arctic, Antarctic, and Alpine Research , 43 , 585 – 592 . 

  27. Kawai , Y. & Kudo , G. ( 2011 ) Local differentiation of flowering phenology in an alpine‐snowbed herb Gentiana nipponica . Botany , 89 , 361 – 367 . 

  28. Kembel , S.W. , Cowan , P.D. , Helmus , M.R. , Cornwell , W.K. , Morlon , H. , Ackerly , D.D. , Blomberg , S.P. & Webb , C.O. ( 2010 ) Picante: R tools for integrating phylogenies and ecology . Bioinformatics , 26 , 1463 – 1464 . 

  29. Kochmer , J.P. & Handel , S.N. ( 1986 ) Constraints and competition in the evolution of flowering phenology . Ecological Monographs , 56 , 303 – 325 . 

  30. Kraft , N.J.B. & Ackerly , D.D. ( 2010 ) Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest . Ecological Monographs , 80 , 401 – 422 . 

  31. Larcher , W. ( 2003 ) Plants under stress . Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups , 4th edn (ed. W. Larcher ), pp. 345 – 450 . Springer , Berlin . 

  32. Lessard‐Therrien , M. , Davies , T.J. & Bolmgren , K. ( 2013 ) A phylogenetic comparative study of flowering phenology along an elevational gradient in the Canadian subarctic . International Journal of Biometeorology , doi: 10.1007/s00484‐013‐0672‐9 . 

  33. Lund , U. & Agostinelli , C. ( 2011 ) R package ‘circular’: Circular Statistics . URL https://r-forge.r-project.org/projects/circular/. 

  34. Matesanz , S. , Gianoli , E. & Valladares , F. ( 2010 ) Global change and the evolution of phenotypic plasticity in plants . Annals of the New York Academy of Sciences , 1206 , 35 – 55 . 

  35. Mazer , S.J. ( 1987 ) The quantitative genetics of life history and fitness components in Raphanus raphanistrum L. (Brassicaceae): ecological and evolutionary consequences of seed weight variation . The American Naturalist , 130 , 891 – 914 . 

  36. Mazer , S. , Travers , S.E. , Cook , B.I. , Davies , T.J. , Bolmgren , K. , Kraft , N.J.B. , Salamin , N. & Inouye , D.W. ( 2013 ) Flowering date of taxonomic families predicts phenological sensitivity to temperature: implications for forecasting the effects of climate change on unstudied taxa . American Journal of Botany , 100 , 1381 – 97 . 

  37. Miller‐Rushing , A.J. , Inouye , D.W. & Primack , R.B. ( 2008 ) How well do first flowering dates measure plant responses to climate change? The effects of population size and sampling frequency . Journal of Ecology , 96 , 1289 – 1296 . 

  38. Mouradov , A. , Cremer , F. & Coupland , G. ( 2002 ) Control of flowering time: interacting pathways as a basis for diversity . Plant Cell , 14 , S111 – S130 . 

  39. Newstrom , L.E. , Frankie , G.W. & Baker , H.G. ( 1994 ) A new classification for plant phenology based on flowering patterns in lowland tropical rain forest trees at La Selva, Costa Rica . Biotropica , 26 , 141 – 159 . 

  40. Ollerton , J. & Lack , A.J. ( 1992 ) Flowering phenology: an example of relaxation in natural selection? Trends in Ecology & Evolution , 7 , 274 – 276 . 

  41. Olsson , K. & Ågren , J. ( 2002 ) Latitudinal population differentiation in phenology, life history and flower morphology in the perennial herb Lythrum salicaria . Journal of Evolutionary Biology , 15 , 983 – 996 . 

  42. Orme , C.D.L. , Freckleton , R.P. , Thomas , G.H. , Petzoldt , T. , Fritz , S.A. & Isaac , N.J.B. ( 2012 ) CAPER: comparative analyses of phylogenetics and evolution in R . Methods in Ecology and Evolution , 3 , 145 – 151 . 

  43. Paradis , E. , Claude , J. & Strimmer , K. ( 2004 ) APE: an R package for analyses of phylogenetics and evolution . Bioinformatics , 20 , 289 – 290 . 

  44. Parmesan , C. ( 2006 ) Ecological and evolutionary responses to recent climate change . Annual Review of Ecology, Evolution, and Systematics , 37 , 637 – 669 . 

  45. Parmesan , C. & Yohe , G. ( 2003 ) A globally coherent fingerprint of climate change impacts across natural systems . Nature , 421 , 37 – 42 . 

  46. Pau , S. , Wolkovich , E.M. , Cook , B.I. , Davies , T.J. , Kraft , N.J.B. , Bolmgren , K. , Betancourt , J.L. & Cleland , E.E. ( 2011 ) Predicting phenology by integrating ecology, evolution and climate science . Global Change Biology , 17 , 3633 – 3643 . 

  47. Pigliucci , M. ( 2005 ) Evolution of phenotypic plasticity: where are we going now? Trends in Ecology & Evolution , 20 , 482 – 486 . 

  48. Rathcke , B. & Lacey , E.P. ( 1985 ) Phenological patterns of terrestrial plants . Annual Review of Ecology and Systematics , 16 , 179 – 214 . 

  49. Rhoné , B. , Vitalis , R. , Goldringer , I. & Bonnin , I. ( 2010 ) A comprehensive approach to detect genetic signatures of natural selection . Evolution , 64 , 2110 – 2125 . 

  50. Root , T.L. , Price , J.T. , Hall , K.R. , Schneider , S.H. , Rosenzweig , C. & Pounds , A.J. ( 2003 ) Fingerprints of global warming on wild animals and plants . Nature , 421 , 57 – 60 . 

  51. Schoener , T.W. ( 2011 ) The newest synthesis: understanding the interplay of evolutionary and ecological dynamics . Science , 330 , 426 – 429 . 

  52. Schwartz , M.D. ( 1997 ) Spring Index models: an approach to connecting satellite and surface phenology . Phenology of Seasonal Climates (eds H. Lieth & M.D. Schwartz ), pp. 23 – 38 . Backhuys , The Netherlands . 

  53. Schwartz , M.D. , Ahas , R. & Aasa , A. ( 2006 ) Onset of spring starting earlier across the northern hemisphere . Global Change Biology , 12 , 343 – 351 . 

  54. Schwartz , M.D. , Ault , T.R. & Betancourt , J.L. ( 2012 ) Spring onset variations and trends in the continental USA: past and regional assessment using temperature‐based indices . International Journal of Climatology , doi: 10.1002/joc.3625 ). 

  55. Schwartz , M.D. & Hanes , J.M. ( 2010 ) Intercomparing multiple measures of the onset of spring in eastern North America . International Journal of Climatology , 30 , 1614 – 1626 . 

  56. Stamatakis , A. , Hoover , P. & Rougemont , J. ( 2008 ) A rapid bootstrap algorithm for the RAxML web‐servers . Systematic Biology , 75 , 758 – 771 . 

  57. Stinchcombe , J.R. , Weinig , C. , Ungerer , M. , Olsen , K.M. , Mays , C. , Halldorsdottir , S.S. , Purugganan , M.D. & Schmitt , J. ( 2004 ) A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA . Proceedings of the National Academy of Sciences USA , 101 , 4712 – 4717 . 

  58. Sultan , S.E. ( 2004 ) Promising directions in plant phenotypic plasticity . Perspectives in Plant Ecology, Evolution and Systematics , 6 , 227 – 233 . 

  59. Sun , S. & Frelich , L.E. ( 2011 ) Flowering phenology and height growth pattern are associated with maximum plant height, relative growth rate and stem tissue mass density in herbaceous grassland species . Journal of Ecology , 99 , 991 – 1000 . 

  60. Swenson , N.G. & Enquist , B.J. ( 2007 ) Ecological and evolutionary determinants of a key plant functional trait: wood density and its community‐wide variation across latitude and elevation . American Journal of Botany , 94 , 451 – 459 . 

  61. Tarasjev , A. ( 1997 ) Flowering phenology in natural populations of Iris pumila . Ecography , 20 , 48 – 54 . 

  62. Thackeray , S.J. , Sparks , T.H. , Frederiksen , M. , Burthe , S. , Bacon , P.J. , Bell , J.R. et?al . ( 2010 ) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments . Global Change Biology , 16 , 3304 – 3313 . 

  63. Webb , C.O. , Ackerly , D.D. & Kembel , S.W. ( 2008 ) Phylocom: software for the analysis of community phylogenetic structure and character evolution . URL http://www.phylodiversity.net/phylocom. 

  64. Webb , C.O. & Donoghue , M.J. ( 2005 ) Phylomatic: tree retrieval for applied phylogenetics . Molecular Ecology Notes , 5 , 181 – 183 . 

  65. Webb , C.O. , Ackerly , D.D. , McPeek , M.A. & Donoghue , M.J. ( 2002 ) Phylogenies and community ecology . Annual Review of Ecology and Systematics , 33 , 475 – 505 . 

  66. White , M.A. , de Beurs , K.M. , Didan , K. , Inouye , D.W. , Richardson , A.D. , Jensen , O.P. et?al . ( 2009 ) Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982‐2006 . Global Change Biology , 15 , 2335 – 2359 . 

  67. Wiens , J.J. & Graham , C.H. ( 2005 ) Niche conservatism: integrating evolution, ecology, and conservation biology . Annual Review of Ecology, Evolution, and Systematics , 36 , 519 – 539 . 

  68. Wiens , J.J. , Ackerly , D.D. , Allen , A.P. , Anacker , B.L. , Buckley , L.B. , Cornell , H.V. et?al . ( 2010 ) Niche conservatism as an emerging principle in ecology and conservation biology . Ecology Letters , 13 , 1310 – 1324 . 

  69. Wikström , N. , Savolainen , V. & Chase , M.W. ( 2001 ) Evolution of the angiosperms: calibrating the family tree . Proceedings of the Royal Society of London B: Biological Sciences , 268 , 2211 – 2220 . 

  70. Wilczek , A.M. , Roe , J.L. , Knapp , M.C. , Cooper , M.D. , Lopez‐Gallego , C. , Martin , L.J. et?al . ( 2009 ) Effects of genetic perturbation on seasonal life history plasticity . Science , 323 , 930 – 934 . 

  71. Willis , C.G. , Ruhfel , B. , Primack , R.B. , Miller‐Rushing , A.J. & Davis , C.C. ( 2008 ) Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change . Proceedings of the National Academy of Sciences USA , 105 , 17029 – 17033 . 

  72. Wilzcek , A.M. , Burghardt , L.T. , Cobb , A.R. , Cooper , M.D. , Welch , S.M. & Schmitt , J. ( 2010 ) Genetic and physiological bases for phenological responses to current and predicted climates . Philosophical Transactions of the Royal Society B , 365 , 3129 – 3147 . 

  73. Wolfe , D.W. , Schwartz , M.D. , Lakso , A.N. , Otsuki , Y. , Pool , R.M. & Shaulis , N.J. ( 2005 ) Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA . International Journal of Biometeorology , 49 , 303 – 309 . 

  74. Wolkovich , E.M. , Cook , B.I. & Regetz , J. ( 2012 ) NECTAR: Network of Ecological and Climatological Timings Across Regions , http://knb.ecoinformatics.org/knb/metacat/nceas.988/knb 

  75. Wright , S.J. & Calderon , O. ( 1995 ) Phylogenetic patterns among tropical flowering phenologies . Journal of Ecology , 83 , 937 – 948 . 

  76. Zhou , L. , Tucker , C.J. , Kaufmann , R.K. , Slayback , D. , Shabanov , N.V. & Myneni , R.B. ( 2001 ) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999 . Journal of Geophysical Research , 106 , 20069 – 20083 . 

관련 콘텐츠

원문 보기

원문 URL 링크

*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로