$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Single-molecule views of MutS on mismatched DNA 원문보기

DNA repair, v.20, 2014년, pp.82 - 93  

Lee, Jong-Bong (Department of Physics, POSTECH) ,  Cho, Won-Ki (Department of Physics, POSTECH) ,  Park, Jonghyun (Department of Physics, POSTECH) ,  Jeon, Yongmoon (Department of Physics, POSTECH) ,  Kim, Daehyung (Department of Physics, POSTECH) ,  Lee, Seung Hwan (School of Interdisciplinary Bioscience & Bioengineering, POSTECH) ,  Fishel, Richard (Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University)

Abstract AI-Helper 아이콘AI-Helper

Abstract Base-pair mismatches that occur during DNA replication or recombination can reduce genetic stability or conversely increase genetic diversity. The genetics and biophysical mechanism of mismatch repair (MMR) has been extensively studied since its discovery nearly 50 years ago. MMR is a stra...

Keyword

참고문헌 (112)

  1. Friedberg 2006 DNA Repair and Mutagenesis 

  2. J. Biol. Chem. Kunkel 279 16895 2004 10.1074/jbc.R400006200 DNA replication fidelity 

  3. J. Mol. Biol. Witkin 8 610 1964 10.1016/S0022-2836(64)80017-6 Pure clones of lactose negative mutants obtained in Escherichia coli after treatment with 5-bromouracil 

  4. Genet. Res. Holliday 5 282 1964 10.1017/S0016672300001233 A mechanism for gene conversion in fungi 

  5. Ann. Rev. Genet. Cox 10 135 1976 10.1146/annurev.ge.10.120176.001031 Bacterial mutator genes and the control of spontaneous mutation 

  6. Cancer Res. Loeb 51 3075 1991 Mutator phenotype may be required for multistage carcinogenesis 

  7. Fam. Cancer Martin-Lopez 12 159 2013 10.1007/s10689-013-9635-x The mechanism of mismatch repair and the functional analysis of mismatch repair defects in Lynch syndrome 

  8. Curr. Opin. Genet. Dev. Fishel 5 382 1995 10.1016/0959-437X(95)80055-7 Identification of mismatch repair genes and their role in the development of cancer 

  9. Annu. Rev. Biochem. Modrich 65 101 1996 10.1146/annurev.bi.65.070196.000533 Mismatch repair in replication fidelity, genetic recombination, and cancer biology 

  10. Proc. Natl. Acad. Sci. U.S.A. Su 83 5057 1986 10.1073/pnas.83.14.5057 Escherichia coli mutS-encoded protein binds to mismatched DNA base pairs 

  11. Proc. Natl. Acad. Sci. U.S.A. Acharya 93 13629 1996 10.1073/pnas.93.24.13629 hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6 

  12. Cancer Res. Bocker 59 816 1999 hMSH5: a human MutS homologue that forms a novel heterodimer with hMSH4 and is expressed during spermatogenesis 

  13. Curr. Opin. Genet. Dev. Fishel 7 105 1997 10.1016/S0959-437X(97)80117-7 MutS homologs in mammalian cells 

  14. J. Biol. Chem. Gradia 275 3922 2000 10.1074/jbc.275.6.3922 The role of mismatched nucleotides in activating the hMSH2-hMSH6 molecular switch 

  15. Mol. Cell. Biol. Harrington 27 6546 2007 10.1128/MCB.00855-07 Saccharomyces cerevisiae Msh2-Msh3 acts in repair of base-base mispairs 

  16. Genes Dev. Marsischky 10 407 1996 10.1101/gad.10.4.407 Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair 

  17. J. Biol. Chem. Wilson 274 1999 10.1074/jbc.274.31.21659 Dissociation of mismatch recognition and ATPase activity by hMSH2-hMSH3 

  18. Nature Lamers 407 711 2000 10.1038/35037523 The crystal structure of DNA mismatch repair protein MutS binding to a G×T mismatch 

  19. Nature Obmolova 407 703 2000 10.1038/35037509 Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA 

  20. J. Biol. Chem. Heinen 286 40287 2011 10.1074/jbc.M111.297523 Human MSH2 (hMSH2) protein controls ATP processing by hMSH2-hMSH6 

  21. EMBO J. Lamers 22 746 2003 10.1093/emboj/cdg064 The alternating ATPase domains of MutS control DNA mismatch repair 

  22. Mol. Cell Mazur 22 39 2006 10.1016/j.molcel.2006.02.010 Inhibition of Msh6 ATPase activity by mispaired DNA induces a Msh2(ATP)-Msh6(ATP) state capable of hydrolysis-independent movement along DNA 

  23. Mol. Cell Acharya 12 233 2003 10.1016/S1097-2765(03)00219-3 The coordinated functions of the E. coli MutS and MutL proteins in mismatch repair 

  24. Cell Gradia 91 995 1997 10.1016/S0092-8674(00)80490-0 The human mismatch recognition complex hMSH2-hMSH6 functions as a novel molecular switch 

  25. J. Biol. Chem. Grilley 264 1000 1989 10.1016/S0021-9258(19)85043-3 Isolation and characterization of the Escherichia coli mutL gene product 

  26. Cell Ban 95 541 1998 10.1016/S0092-8674(00)81621-9 Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis 

  27. Trends Biochem. Sci. Dutta 25 24 2000 10.1016/S0968-0004(99)01503-0 GHKL, an emergent ATPase/kinase superfamily 

  28. Acharya 2006 The Mechanism of DNA Mismatch Repair from Bacteria to Human 

  29. Nat. Rev. Mol. Cell. Biol. Jiricny 7 335 2006 10.1038/nrm1907 The multifaceted mismatch-repair system 

  30. Curr. Opin. Genet. Dev. Kolodner 9 89 1999 10.1016/S0959-437X(99)80013-6 Eukaryotic DNA mismatch repair 

  31. J. Biol. Chem. Modrich 272 24727 1997 10.1074/jbc.272.40.24727 Strand-specific mismatch repair in mammalian cells 

  32. Marinus 81 1984 DNA Methylation, Biochemistry and Biological Significance Methylation of prokaryotic DNA 

  33. Genetics Viswanathan 149 7 1998 10.1093/genetics/149.1.7 Single-strand DNA-specific exonucleases in Escherichia coli - roles in repair and mutation avoidance 

  34. J. Biol. Chem. Constantin 280 39752 2005 10.1074/jbc.M509701200 Human mismatch repair: reconstitution of a nick-directed bidirectional reaction 

  35. J. Biol. Chem. Grilley 268 11830 1993 10.1016/S0021-9258(19)50275-7 Bidirectional excision in methyl-directed mismatch repair 

  36. Science Lahue 245 160 1989 10.1126/science.2665076 DNA mismatch correction in a defined system 

  37. Mol. Cell Ghodgaonkar 50 323 2013 10.1016/j.molcel.2013.03.019 Ribonucleotides misincorporated into DNA act as strand-discrimination signals in eukaryotic mismatch repair 

  38. Mol. Cell Lujan 50 437 2013 10.1016/j.molcel.2013.03.017 Ribonucleotides are signals for mismatch repair of leading-strand replication errors 

  39. Cancer Res. Schmutte 58 4537 1998 Human exonuclease I interacts with the mismatch repair protein hMSH2 

  40. Cancer Res. Tishkoff 58 5027 1998 Identification of a human gene encoding a homologue of Saccharomyces cerevisiae EXO1, an exonuclease implicated in mismatch repair and recombination 

  41. Proc. Natl. Acad. Sci. U.S.A. Tishkoff 94 7487 1997 10.1073/pnas.94.14.7487 Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2 

  42. Cell Zhang 122 693 2005 10.1016/j.cell.2005.06.027 Reconstitution of 5′-directed human mismatch repair in a purified system 

  43. Mol. Cell Dzantiev 15 31 2004 10.1016/j.molcel.2004.06.016 A defined human system that supports bidirectional mismatch-provoked excision 

  44. Cell Kadyrov 126 297 2006 10.1016/j.cell.2006.05.039 Endonucleolytic function of MutLalpha in human mismatch repair 

  45. J. Biol. Chem. Kadyrov 282 37181 2007 10.1074/jbc.M707617200 Saccharomyces cerevisiae MutLalpha is a mismatch repair endonuclease 

  46. Mol. Cell Pillon 39 145 2010 10.1016/j.molcel.2010.06.027 Structure of the endonuclease domain of MutL: unlicensed to cut 

  47. DNA Repair (Amst) Pillon 10 87 2011 10.1016/j.dnarep.2010.10.003 The endonuclease domain of MutL interacts with the beta sliding clamp 

  48. Mol. Cell. Biol. Amin 21 5142 2001 10.1128/MCB.21.15.5142-5155.2001 exo1-Dependent mutator mutations: model system for studying functional interactions in mismatch repair 

  49. Genes Dev. Wei 17 603 2003 10.1101/gad.1060603 Inactivation of Exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility 

  50. Proc. Natl. Acad. Sci. U.S.A. Kolodner 104 12953 2007 10.1073/pnas.0705698104 Coupling distant sites in DNA during DNA mismatch repair 

  51. Cold Spring Harbor Symp. Quant. Biol. Fishel 65 217 2000 10.1101/sqb.2000.65.217 Signaling mismatch repair: the mechanics of an adenosine-nucleotide molecular switch 

  52. Mol. Cell Gradia 3 255 1999 10.1016/S1097-2765(00)80316-0 hMSH2-hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA 

  53. EMBO J. Allen 16 4467 1997 10.1093/emboj/16.14.4467 MutS mediates heteroduplex loop formation by a translocation mechanism 

  54. J. Biol. Chem. Blackwell 273 32049 1998 10.1074/jbc.273.48.32049 DNA-dependent activation of the hMutS alpha ATPase 

  55. Genes Dev. Fishel 12 2096 1998 10.1101/gad.12.14.2096 Mismatch repair, molecular switches, and signal transduction 

  56. Mol. Cell Junop 7 1 2001 10.1016/S1097-2765(01)00149-6 Composite active site of an ABC ATPase: MutS uses ATP to verify mismatch recognition and authorize DNA repair 

  57. Proc. Natl. Acad. Sci. U.S.A. Pluciennik 104 12709 2007 10.1073/pnas.0705129104 Protein roadblocks and helix discontinuities are barriers to the initiation of mismatch repair 

  58. Mol. Cell Warren 26 579 2007 10.1016/j.molcel.2007.04.018 Structure of the human MutSalpha DNA lesion recognition complex 

  59. Cancer Cell Heinen 1 469 2002 10.1016/S1535-6108(02)00073-9 HNPCC mutations in hMSH2 result in reduced hMSH2-hMSH6 molecular switch functions 

  60. J. Biol. Chem. Mendillo 285 13170 2010 10.1074/jbc.M110.108894 Probing DNA- and ATP-mediated conformational changes in the MutS family of mispair recognition proteins using deuterium exchange mass spectrometry 

  61. Mol. Cell Shell 26 565 2007 10.1016/j.molcel.2007.04.024 The N terminus of Saccharomyces cerevisiae Msh6 is an unstructured tether to PCNA 

  62. J. Phys. A: Math. Theor. Mirny 42 434013 2009 10.1088/1751-8113/42/43/434013 How a protein searches for its site on DNA: the mechanism of facilitated diffusion 

  63. Annu. Rev. Biophys. Biophys. Chem. Berg 14 131 1985 10.1146/annurev.bb.14.060185.001023 Diffusion-controlled macromolecular interactions 

  64. Biochemistry Berg 20 6929 1981 10.1021/bi00527a028 Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory 

  65. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. Slutsky 69 061903 2004 10.1103/PhysRevE.69.061903 Diffusion in correlated random potentials, with applications to DNA 

  66. Biophys. J. Slutsky 87 4021 2004 10.1529/biophysj.104.050765 Kinetics of protein-DNA interaction: facilitated target location in sequence-dependent potential 

  67. Proc. Natl. Acad. Sci. U.S.A. Blainey 103 5752 2006 10.1073/pnas.0509723103 A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA 

  68. Yanagida 2009 Single Molecule Dynamics in Life Science 

  69. Mol. Cell Jiang 20 771 2005 10.1016/j.molcel.2005.10.014 Detection of high-affinity and sliding clamp modes for MSH2-MSH6 by single-molecule unzipping force analysis 

  70. J. Biol. Chem. Mendillo 280 22245 2005 10.1074/jbc.M407545200 Analysis of the interaction between the Saccharomyces cerevisiae MSH2-MSH6 and MLH1-PMS1 complexes with DNA using a reversible DNA end-blocking system 

  71. Mol. Cell Gorman 28 359 2007 10.1016/j.molcel.2007.09.008 Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6 

  72. Nat. Struct. Mol. Biol. Gorman 17 932 2010 10.1038/nsmb.1858 Visualizing one-dimensional diffusion of eukaryotic DNA repair factors along a chromatin lattice 

  73. Annu. Rev. Biochem. Joo 77 51 2008 10.1146/annurev.biochem.77.070606.101543 Advances in single-molecule fluorescence methods for molecular biology 

  74. PLoS ONE Park 5 e15496 2010 10.1371/journal.pone.0015496 Single-molecule analysis reveals the kinetics and physiological relevance of MutL-ssDNA binding 

  75. Biol. Chem. Drotschmann 383 969 2002 10.1515/BC.2002.103 DNA binding properties of the yeast Msh2-Msh6 and Mlh1-Pms1 heterodimers 

  76. Biochemistry Sass 49 3174 2010 10.1021/bi901871u Single-molecule FRET TACKLE reveals highly dynamic mismatched DNA-MutS complexes 

  77. Nat. Struct. Mol. Biol. Jeong 18 379 2011 10.1038/nsmb.2009 MutS switches between two fundamentally distinct clamps during mismatch repair 

  78. Structure Cho 20 1264 2012 10.1016/j.str.2012.04.017 ATP alters the diffusion mechanics of MutS on mismatched DNA 

  79. EMBO J. Qiu 31 2528 2012 10.1038/emboj.2012.95 Large conformational changes in MutS during DNA scanning, mismatch recognition and repair signalling 

  80. Proc. Natl. Acad. Sci. U.S.A. Gorman 109 E3074 2012 10.1073/pnas.1211364109 Single-molecule imaging reveals target-search mechanisms during DNA mismatch repair 

  81. J. Biol. Chem. Tessmer 283 36646 2008 10.1074/jbc.M805712200 Mechanism of MutS searching for DNA mismatches and signaling repair 

  82. J. Biol. Chem. Schofield 276 28291 2001 10.1074/jbc.M103148200 Interaction of Escherichia coli MutS and MutL at a DNA mismatch 

  83. Nucleic Acids Res. Yang 33 4322 2005 10.1093/nar/gki708 Determination of protein-DNA binding constants and specificities from statistical analyses of single molecules: MutS-DNA interactions 

  84. Proc. Natl. Acad. Sci. U.S.A. Mazurek 106 4177 2009 10.1073/pnas.0808572106 Sequence context effect for hMSH2-hMSH6 mismatch-dependent activation 

  85. Nature Forget 482 423 2012 10.1038/nature10782 Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search 

  86. Proc. Natl. Acad. Sci. U.S.A. Graneli 103 1221 2006 10.1073/pnas.0508366103 Long-distance lateral diffusion of human Rad51 on double-stranded DNA 

  87. Biophys. J. Tafvizi 95 L01 2008 10.1529/biophysj.108.134122 Tumor suppressor p53 slides on DNA with low friction and high stability 

  88. Phys. Rev. Lett. Wang 97 048302 2006 10.1103/PhysRevLett.97.048302 Single molecule measurements of repressor protein 1D diffusion on DNA 

  89. Nucleic Acids Res. Forties 39 8306 2011 10.1093/nar/gkr422 A quantitative model of nucleosome dynamics 

  90. Mol. Cell Javaid 36 1086 2009 10.1016/j.molcel.2009.12.010 Nucleosome remodeling by hMSH2-hMSH6 

  91. Bioconjug. Chem. Gruber 11 696 2000 10.1021/bc000015m Anomalous fluorescence enhancement of Cy3 and cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalent linking to IgG and noncovalent binding to avidin 

  92. Proc. Natl. Acad. Sci. U.S.A. Iqbal 105 11176 2008 10.1073/pnas.0801707105 Orientation dependence in fluorescent energy transfer between Cy3 and Cy5 terminally attached to double-stranded nucleic acids 

  93. Biophys. J. Oiwa 84 634 2003 10.1016/S0006-3495(03)74883-8 The 2′-O- and 3′-O-Cy3-EDA-ATP(ADP) complexes with myosin subfragment-1 are spectroscopically distinct 

  94. Annu. Rev. Biochem. Kunkel 74 681 2005 10.1146/annurev.biochem.74.082803.133243 DNA mismatch repair 

  95. DNA Repair (Amst) Yang 5 654 2006 10.1016/j.dnarep.2006.02.004 Poor base stacking at DNA lesions may initiate recognition by many repair proteins 

  96. Biochemistry Antony 43 13115 2004 10.1021/bi049010t Asymmetric ATP binding and hydrolysis activity of the Thermus aquaticus MutS dimer is key to modulation of its interactions with mismatched DNA 

  97. J. Biol. Chem. Blackwell 273 32055 1998 10.1074/jbc.273.48.32055 Nucleotide-promoted release of hMutS alpha from heteroduplex DNA is consistent with an ATP-dependent translocation Mechanism 

  98. Nat. Genet. Flores-Rozas 26 375 2000 10.1038/81708 Proliferating cell nuclear antigen and Msh2p-Msh6p interact to form an active mispair recognition complex 

  99. Nucleic Acids Res. Gu 26 1173 1998 10.1093/nar/26.5.1173 ATP-dependent interaction of human mismatch repair proteins and dual role of PCNA in mismatch repair 

  100. J. Biol. Chem. Lau 278 14 2003 10.1074/jbc.C200627200 Transfer of the MSH2.MSH6 complex from proliferating cell nuclear antigen to mispaired bases in DNA 

  101. Proc. Natl. Acad. Sci. U.S.A. Pluciennik 107 16066 2010 10.1073/pnas.1010662107 PCNA function in the activation and strand direction of MutLalpha endonuclease in mismatch repair 

  102. Cell Umar 87 65 1996 10.1016/S0092-8674(00)81323-9 Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis 

  103. Nature Lee 439 621 2006 10.1038/nature04317 DNA primase acts as a molecular brake in DNA replication 

  104. Nucleic Acids Res. Elez 40 3929 2012 10.1093/nar/gkr1298 Stoichiometry of MutS and MutL at unrepaired mismatches in vivo suggests a mechanism of repair 

  105. Cell Hombauer 147 1040 2011 10.1016/j.cell.2011.10.025 Visualization of eukaryotic DNA mismatch repair reveals distinct recognition and repair intermediates 

  106. Nat. Methods Gebhardt 10 421 2013 10.1038/nmeth.2411 Single-molecule imaging of transcription factor binding to DNA in live mammalian cells 

  107. Science Lia 335 328 2012 10.1126/science.1210400 Polymerase exchange during Okazaki fragment synthesis observed in living cells 

  108. J. Microsc. Wolter 237 12 2010 10.1111/j.1365-2818.2009.03287.x Real-time computation of subdiffraction-resolution fluorescence images 

  109. Nat. Methods Henriques 7 339 2010 10.1038/nmeth0510-339 QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ 

  110. Nat. Methods Hedde 6 689 2009 10.1038/nmeth1009-689 Online image analysis software for photoactivation localization microscopy 

  111. Phys. Rev. Lett. Lee 109 28101 2012 10.1103/PhysRevLett.109.248101 Polarization-controlled photoswitching resolves dipole directions with subwavelength resolution 

  112. J. Biol. Chem. Biswas 271 5040 1996 10.1074/jbc.271.9.5040 Identification and characterization of a thermostable MutS homolog from Thermus aquaticus 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로