$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Formation mechanisms of white etching cracks and white etching area under rolling contact fatigue

Proceedings of the Institution of Mechanical Engineers. Part J, Journal of engineering tribology, v.228 no.10, 2014년, pp.1047 - 1062  

Evans, M-H ,  Wang, L ,  Wood, RJK

Abstract AI-Helper 아이콘AI-Helper

The formation of white etching cracks in the 1 mm zone beneath the contact surface in steel rolling element bearings causes a premature wear failure mode called white structure flaking. The formation drivers of white etching cracks are contested, as are the initiation and propagation mechanis...

주제어

참고문헌 (43)

  1. Tamada, K., Tanaka, H.. Occurrence of brittle flaking on bearings used for automotive electrical instruments and auxiliary devices. Wear: An international journal on the science and technology of friction, lubrication and wear, vol.199, no.2, 245-252.

  2. Evans, M-H. White structure flaking (WSF) in wind turbine gearbox bearings: Effects of ‘butterflies’ and white etching cracks (WECs). Materials science and technology : MST : a publication of the Institute of Metals, vol.28, no.1, 3-22.

  3. 10.5772/20790 

  4. Kohara, Mika, Kawamura, Takayuki, Egami, Masaki. Study on Mechanism of Hydrogen Generation from Lubricants. Tribology transactions : a publication of the Society of Tribologists and Lubrication Engineers, vol.49, no.1, 53-60.

  5. 10.4271/2005-01-1868 

  6. Motion & Control NSK 1 2004 

  7. Kino, Nobuo, Otani, Keizo. The influence of hydrogen on rolling contact fatigue life and its improvement. JSAE review, vol.24, no.3, 289-294.

  8. Uyama, Hideyuki, Yamada, Hiroki, Hidaka, Hideyuki, Mitamura, Nobuaki. The Effects of Hydrogen on Microstructural Change and Surface Originated Flaking in Rolling Contact Fatigue. Tribology online, vol.6, no.2, 123-132.

  9. Evolution Stadler K 

  10. Lund, Thore B.. Sub-Surface Initiated Rolling Contact Fatigue-Influence of Non-Metallic Inclusions, Processing History, and Operating Conditions. Journal of ASTM International, vol.7, no.5, 1-12.

  11. J ASTM Int Vegter RH 1 7 2009 10.1520/JAI102543 

  12. 10.1520/STP103908 

  13. 10.1080/10402004.2013.823531 

  14. Greco, A., Sheng, S., Keller, J., Erdemir, A.. Material wear and fatigue in wind turbine Systems. Wear: An international journal on the science and technology of friction, lubrication and wear, vol.302, no.1, 1583-1591.

  15. Evans, M.H., Richardson, A.D., Wang, L., Wood, R.J.K.. Serial sectioning investigation of butterfly and white etching crack (WEC) formation in wind turbine gearbox bearings. Wear: An international journal on the science and technology of friction, lubrication and wear, vol.302, no.1, 1573-1582.

  16. Evans, M.H., Richardson, A.D., Wang, L., Wood, R.J.K.. Effect of hydrogen on butterfly and white etching crack (WEC) formation under rolling contact fatigue (RCF). Wear: An international journal on the science and technology of friction, lubrication and wear, vol.306, no.1, 226-241.

  17. Evans, M.H., Wang, L., Jones, H., Wood, R.J.K.. White etching crack (WEC) investigation by serial sectioning, focused ion beam and 3-D crack modelling. Tribology international, vol.65, 146-160.

  18. Tribol Int Evans M-H 

  19. Evans, M.H., Walker, J.C., Ma, C., Wang, L., Wood, R.J.K.. A FIB/TEM study of butterfly crack formation and white etching area (WEA) microstructural changes under rolling contact fatigue in 100Cr6 bearing steel. Materials science & engineering. properties, microstructure and processing. A, Structural materials, vol.570, 127-134.

  20. Transient Process Tribol Kuhn M 459 43 2003 

  21. 10.1520/STP12123S 

  22. Grabulov, A., Petrov, R., Zandbergen, H.W.. EBSD investigation of the crack initiation and TEM/FIB analyses of the microstructural changes around the cracks formed under Rolling Contact Fatigue (RCF). International journal of fatigue, vol.32, no.3, 576-583.

  23. Rolling bearing, rolling bearing for fuel cell, compressor for fuel cell system and fuel cell system Iso K 2007 

  24. Nagumo, M., Nakamura, M., Takai, K.. Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steels. Metallurgical and materials transactions. A, Physical metallurgy and materials science, vol.32, no.2, 339-347.

  25. Nagumo, M.. Hydrogen related failure of steels - a new aspect. Materials science and technology : MST : a publication of the Institute of Metals, vol.20, no.8, 940-950.

  26. Takai, K., Shoda, H., Suzuki, H., Nagumo, M.. Lattice defects dominating hydrogen-related failure of metals. Acta materialia, vol.56, no.18, 5158-5167.

  27. Murakami, Yukitaka, Matsunaga, Hisao. The effect of hydrogen on fatigue properties of steels used for fuel cell system. International journal of fatigue, vol.28, no.11, 1509-1520.

  28. Matsubara, Y, Hamada, H. A Novel Method to Evaluate the Influence of Hydrogen on Fatigue Properties of High Strength Steels. Journal of ASTM International, vol.3, no.2, 14048-.

  29. Hirth, John P.. Effects of hydrogen on the properties of iron and steel. Metallurgical transactions A, Physical metallurgy and materials science, vol.11, no.6, 861-890.

  30. 10.13182/FST05-A1022 

  31. 19th ASM heat treating society proceedings including steel heat treating in the new millennium Walton HW 558 1999 

  32. Enomoto, M., Hirakami, D., Tarui, T.. Thermal Desorption Analysis of Hydrogen in High Strength Martensitic Steels. Metallurgical and materials transactions. A, Physical metallurgy and materials science, vol.43, no.2, 572-581.

  33. Weld J Park D 27 2002 

  34. Pressouyre, G. M.. A classification of hydrogen traps in steel. Metallurgical transactions A, Physical metallurgy and materials science, vol.10, no.10, 1571-1573.

  35. Birnbaum, H.K., Sofronis, P.. Hydrogen-enhanced localized plasticity-a mechanism for hydrogen-related fracture. Materials science & engineering. properties, microstructure and processing. A, Structural materials, vol.176, no.1, 191-202.

  36. Oriani, R. A.. Whitney Award Lecture-1987:Hydrogen-The Versatile Embrittler. Corrosion, vol.43, no.7, 390-397.

  37. Szost, B.A., Rivera-Diaz-del-Castillo, P.E.J.. Unveiling the nature of hydrogen embrittlement in bearing steels employing a new technique. Scripta materialia, vol.68, no.7, 467-470.

  38. Fujita, Shinji, Matsuoka, Saburo, Murakami, Yukitaka, Marquis, Gary. Effect of hydrogen on Mode II fatigue crack behavior of tempered bearing steel and microstructural changes. International journal of fatigue, vol.32, no.6, 943-951.

  39. Murakami, Yukitaka, Kanezaki, Toshihiko, Mine, Yoji, Matsuoka, Saburo. Hydrogen Embrittlement Mechanism in Fatigue of Austenitic Stainless Steels. Metallurgical and materials transactions. A, Physical metallurgy and materials science, vol.39, no.6, 1327-1339.

  40. Lewis, MWJ, Tomkins, B. A fracture mechanics interpretation of rolling bearing fatigue. Proceedings of the Institution of Mechanical Engineers. Part J, Journal of engineering tribology, vol.226, no.5, 389-405.

  41. Fatigue of materials Suresh S 1991 

  42. Grabulov, A., Ziese, U., Zandbergen, H.W.. TEM/SEM investigation of microstructural changes within the white etching area under rolling contact fatigue and 3-D crack reconstruction by focused ion beam. Scripta materialia, vol.57, no.7, 635-638.

  43. Mechanical metallurgy Dieter GE 1986 3 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로