$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Joule heating in low-voltage electroosmotic with electrolyte containing nano-bubble mixtures through microchannel rectangular orifice

Chemical engineering research & design : transactions of the Institution of Chemical Engineers, v.102, 2015년, pp.407 - 415  

Jamalabadi, M.Y.A.

Abstract AI-Helper 아이콘AI-Helper

Joule heating effects on a rectangular orifice in microchannel filled with electrolyte containing nanobubbles are comprehensively investigated with emphasis on the thermal boundary conditions. Numerical studies are performed for the velocity and temperature fields to show the various aspects of flui...

주제어

참고문헌 (66)

  1. Ind. Eng. Chem. Res. Anderko 36 5 1932 1997 10.1021/ie9605903 Computation of electrical conductivity of multicomponent aqueous systems in wide concentration and temperature ranges 

  2. Sens. Actuators B: Chem. Brask 92 127 2003 10.1016/S0925-4005(03)00130-8 Theoretical analysis of the low-voltage cascade electroosmotic pump 

  3. Phys. Rev. Lett. Braun 89 188103 2002 10.1103/PhysRevLett.89.188103 Trapping of DNA by thermophoretic depletion and convection 

  4. J. Appl. Phys. Burg 107 124 2010 10.1063/1.3448497 Electrokinetic framework of dielectrophoretic deposition devices 

  5. J. Phys. D: Appl. Phys. Castellanos 36 2584 2003 10.1088/0022-3727/36/20/023 Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws 

  6. Electrophoresis Cetin 29 994 2008 10.1002/elps.200700601 Effect of Joule heating on electrokinetic transport 

  7. Electrophoresis Chaurey 34 1097 2013 10.1002/elps.201200456 Scaling down constriction-based (electrodeless) dielectrophoresis devices for trapping nanoscale bioparticles in physiological media of high-conductivity 

  8. Colloids Surf. A: Physicochem. Eng. Asp. Cho 269 28 2005 10.1016/j.colsurfa.2005.06.063 Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions 

  9. Crowe 1998 Multiphase Flows with Droplets and Particles 

  10. J. Fluid Mech. Dagan 115 505 1982 10.1017/S0022112082000883 An infinite-series solution for the creeping motion through an orifice of finite length 

  11. Lab Chip de Mello 4 417 2004 10.1039/b405760k Precise temperature control in microfluidic devices using Joule heating of ionic liquids 

  12. Integr. Biol. Desai 3 48 2011 10.1039/C0IB00067A Cell-based sensors for quantifying the physiological impact of microsystems 

  13. J. Phys. Chem. C Erickson 112 37 14563 2008 Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems 

  14. Lab Chip Francis 3 3 141 2003 Effect of degassing on the electrical conductivity of pure water and potassium chloride solutions 

  15. Lab Chip Gao 11 1770 2011 10.1039/c1lc20054b Hybrid electrokinetic manipulation in high-conductivity media 

  16. Energy Hajmohammadi 31 2142 2006 10.1016/j.energy.2005.09.001 Optimal Reynolds number for the fully developed laminar forced convection in a helical coiled tube 

  17. J. Therm. Sci. Technol. Hajmohammadi 7 677 2012 10.1299/jtst.7.677 Radiation effect on constructal design analysis of a T-Y-shaped assembly of fins 

  18. Appl. Therm. Eng. Hajmohammadi 61 268 2013 10.1016/j.applthermaleng.2013.08.009 Heat transfer improvement due to the imposition of non-uniform wall heating for in-tube laminar forced convection 

  19. Int. J. Heat Fluid Flow Hajmohammadi 40 89 2013 10.1016/j.ijheatfluidflow.2013.01.010 Optimal discrete distribution of heat flux elements for in-tube laminar forced convection 

  20. Energy Convers. Manage. Hajmohammadi 76 691 2013 10.1016/j.enconman.2013.08.016 Detailed analysis for the cooling performance enhancement of a heat source under a thick plate 

  21. Therm. Sci. Hajmohammadi 159 2013 New methods to cope with temperature elevations in heated segments of flat plates cooled by boundary layer flow 

  22. J. Heat Transf. Trans. ASME Hajmohammadi 135 2013 Improvement of forced convection cooling due to the attachment of heat sources to a conducting thick plate 

  23. Int. J. Therm. Sci. Hajmohammadi 77 66 2014 10.1016/j.ijthermalsci.2013.10.015 Phi and psi shaped conductive routes for improved cooling in a heat generating piece 

  24. Numer. Heat Transf. A Hajmohammadi 66 205 2014 10.1080/10407782.2013.873244 Effect of a thick plate on the excess temperature of iso-heat flux heat sources cooled by laminar forced convection flow; conjugate analysis 

  25. J. Mech. Eng. Sci. C Hajmohammadi 228 2337 2014 10.1177/0954406213517675 Essential reformulations for optimization of highly conductive inserts embedded into a rectangular chip exposed to a uniform heat flux 

  26. Adv. Powder Technol. Hajmohammadi 26 193 2015 10.1016/j.apt.2014.09.008 Effects of Cu and Ag nano-particles on flow and heat transfer from permeable surfaces 

  27. Adv. Colloid Interface Sci. Hampton 154 30 2010 10.1016/j.cis.2010.01.006 Nanobubbles and the nanobubble bridging capillary force 

  28. Microfluid. Nanofluid. Harting 8 1 2010 10.1007/s10404-009-0506-6 Lattice Boltzmann simulations in microfluidics: probing the no-slip boundary condition in hydrophobic, rough, and surface nanobubble laden microchannels 

  29. Int. J. Heat Mass Transf. Horiuchi 47 3085 2004 10.1016/j.ijheatmasstransfer.2004.02.020 Joule heating effects in electroosmotically driven microchannel flows 

  30. Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci. Jamalabadi 226 1302 2012 10.1177/0954406211419613 Two-dimensional simulation of thermal loading with horizontal heat sources 

  31. Int. J. Numer. Methods Heat Fluid Flow Jamalabadi 23 4 649 2013 10.1108/09615531311323791 Numerical investigation of thermal radiation effects on open cavity with discrete heat sources 

  32. Entropy Jamalabadi 17 2 866 2015 10.3390/e17020866 Optimal design of MHD mixed convection flow in a vertical channel with slip boundary conditions and thermal radiation effects by using entropy generation minimization method 

  33. J. Mar. Sci. Appl. Jamalabadi 13 3 281 2014 10.1007/s11804-014-1258-6 Analytical study of magnetohydrodynamic propulsion stability 

  34. J. King Saud Univ. Eng. Sci. Jamalabadi 26 2 159 2014 Experimental investigation of thermal loading of a horizontal thin plate using infrared camera 

  35. J. Phys. Chem. B Jin 111 11745 2007 10.1021/jp074260f Effects of pH and ionic strength on the stability of nanobubbles in aqueous solutions of α-cyclodextrin 

  36. Anal. Chem. Johnson 74 1 45 2002 10.1021/ac010895d Rapid microfluidic mixing 

  37. J. Colloid Interface Sci. Kim 223 285 2000 10.1006/jcis.1999.6663 Zeta potential of nanobubbles generated by ultrasonication in aqueous alkyl polyglycoside solutions 

  38. Anal. Chem. Kua 79 6975 2007 10.1021/ac070810u Dynamic cell fractionation and transportation using moving dielectrophoresis 

  39. Kuzmin 2000 Efficient Numerical Techniques for Flow Simulation in Bubble Column Reactors 

  40. Kuzmin 2005 Finite Element Simulation of Turbulent Bubbly Flows in Gas-Liquid Reactors 

  41. Int. J. Heat Mass Transf. Mei 70 709 2014 10.1016/j.ijheatmasstransfer.2013.11.060 Effect of tip clearance on the heat transfer and pressure drop performance in the micro-reactor with micro-pin-fin arrays at low Reynolds number 

  42. Phys. Fluids Mishra 17 013601 2005 10.1063/1.1827602 Cavitation in flow through a micro-orifice inside a silicon microchannel 

  43. J. Microelectromech. Syst. Mishra 14 987 2005 10.1109/JMEMS.2005.851800 Size scale effects on cavitating flows through microorifices entrenched in rectangular microchannels 

  44. Appl. Therm. Eng. Najafi 31 1839 2011 10.1016/j.applthermaleng.2011.02.031 Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm 

  45. Nguyen 2002 Fundamentals and Applications of Microfluidics 

  46. Microfluid. Nanofluid. Park 6 509 2009 10.1007/s10404-008-0326-0 A reduced-order model of the low-voltage cascade electroosmotic micropump 

  47. Adv. Drug Deliv. Rev. Pethig 65 1589 2013 10.1016/j.addr.2013.09.003 Dielectrophoresis: an assessment of its potential to aid the research and practice of drug discovery and delivery 

  48. Therm. Sci. Pouzesh 19 609 2015 10.2298/TSCI120427164P Investigations on the internal shape of constructal cavities intruding a heat generating body 

  49. Int. J. Thermophys. Ramires 21 3 671 2000 10.1023/A:1006628419636 Thermal conductivity of aqueous potassium chloride solutions 

  50. Anal. Chem. Ross 73 17 4117 2001 10.1021/ac010370l Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye 

  51. IEEE Trans. Magn. Shahidian 45 6 2667 2009 10.1109/TMAG.2009.2018954 Flow analysis of non-Newtonian blood in a magnetohydrodynamic pump 

  52. Int. Commun. Heat Mass Transf. Shokouhmand 34 6 753 2007 10.1016/j.icheatmasstransfer.2007.02.010 Optimal Reynolds number of laminar forced convection in a helical tube subjected to uniform wall temperature 

  53. AIChE J. Sokolichin 50 24 2004 10.1002/aic.10003 Simulations of buoyancy driven bubbly flow: established simplifications and open questions 

  54. J. Electrostat. Song 68 49 2010 10.1016/j.elstat.2009.10.001 A semi-analytical approach using artificial neural network for dielectrophoresis generated by parallel electrodes 

  55. Electrophoresis Sridharan 32 2274 2011 10.1002/elps.201100011 Quantification and evaluation of Joule heating in on-chip capillary electrophoresis 

  56. Electrophoresis Takamura 24 185 2003 10.1002/elps.200390012 Low-voltage electroosmosis pump for stand-alone microfluidics devices 

  57. Electrophoresis Tang 27 628 2006 10.1002/elps.200500681 Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels 

  58. Sens. Actuators A: Phys. Tang 139 221 2007 10.1016/j.sna.2007.06.002 Joule heating and its effects on electrokinetic transport of solutes in rectangular microchannels 

  59. Exp. Therm. Fluid Sci. Ushida 39 54 2012 10.1016/j.expthermflusci.2012.01.008 Drag reduction effect of nanobubble mixture flows through micro-orifices and capillaries 

  60. J. Surfactants Deterg. Ushida 15 695 2012 10.1007/s11743-012-1348-x Effect of mixed nanobubble and microbubble liquids on the washing rate of cloth in an alternating flow 

  61. Exp. Therm. Fluid Sci. Ushida 52 191 2014 10.1016/j.expthermflusci.2013.09.010 Anomalous phenomena in several types of liquid flows through small orifices in a range of low Reynolds numbers 

  62. Valyashko 2008 Hydrothermal Experimental Data 

  63. Lab Chip Xuan 4 3 230 2004 10.1039/b315036d Electroosmotic flow with Joule heating effects 

  64. Electrophoresis Xuan 29 1 33 2008 10.1002/elps.200700302 Joule heating in electrokinetic flow 

  65. J. Membr. Sci. Zhang 434 65 2013 10.1016/j.memsci.2013.01.058 Convective mass transfer and pressure drop correlations for cross-flow structured hollow fiber membrane bundles under low Reynolds numbers but with turbulent flow behaviors 

  66. Chem. Eng. Res. Des. Zivkovic 9I 1 2013 10.1016/j.cherd.2012.05.022 A pressure drop correlation for low Reynolds number Newtonian flows through a rectangular orifice in a similarly shaped micro-channel 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로