$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] pH and redox sensitive albumin hydrogel: A self-derived biomaterial 원문보기

Scientific reports, v.5, 2015년, pp.15977 -   

Raja, S Thirupathi Kumara (CSIR-CLRI Adyar, Chennai, Tamil Nadu, India) ,  Thiruselvi, T (CSIR-CLRI Adyar, Chennai, Tamil Nadu, India) ,  Mandal, Asit Baran (CSIR-CLRI Adyar, Chennai, Tamil Nadu, India) ,  Gnanamani, A (CSIR-CLRI Adyar, Chennai, Tamil Nadu, India)

Abstract AI-Helper 아이콘AI-Helper

Serum albumin can be transformed to a stimuli (pH and redox) responsive hydrogel using the reduction process followed by oxidative refolding. The preparation of albumin hydrogel involves a range of concentrations (75, 150, 300, 450, 600 and 750 μM) and pH (2.0–10.0) values and the ge...

참고문헌 (40)

  1. Furth M. E. , Atala A. & Van Dyke M. E. Smart biomaterials design for tissue engineering and regenerative medicine . Biomaterials 28 , 5068 – 5073 ( 2007 ). 17706763 

  2. Hubbell J. A. Biomaterials in tissue engineering . Nature Biotechnology 13 , 565 – 576 ( 1995 ). 

  3. Pashuck E. T. & Stevens M. M. Designing regenerative biomaterial therapies for the clinic . Science translational medicine 4 , 160sr164 – 160sr164 ( 2012 ). 

  4. Peppas N. A. , Hilt J. Z. , Khademhosseini A. & Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology . Advanced Materials 18 , 1345 – 1360 ( 2006 ). 

  5. Raja S. T. K. , Thiruselvi T. , Aravindhan R. , Mandal A. B. & Gnanamani A. In vitro and in vivo assessments of a 3-(3, 4-dihydroxyphenyl)-2-propenoic acid bioconjugated gelatin-based injectable hydrogel for biomedical applications . Journal of Materials Chemistry B 3 , 1230 – 1244 ( 2015 ). 

  6. Roy D. , Cambre J. N. & Sumerlin B. S. Future perspectives and recent advances in stimuli-responsive materials . Prog. Polym. Sci. 35 , 278 – 301 ( 2010 ). 

  7. Shalaby S. W. Biomedical polymers: designed-to-degrade systems . (Hanser, 1994 ). 

  8. Tokarev I. & Minko S. Stimuli-responsive hydrogel thin films . Soft Matter 5 , 511 – 524 ( 2009 ). 

  9. El-Sherif H. , El-Masry M. & Taleb M. F. A. pH‐sensitive hydrogels based on bovine serum albumin for anticancer drug delivery . J. Appl. Polym. Sci. 115 , 2050 – 2059 ( 2010 ). 

  10. Park H.-Y. , Song I.-H. , Kim J.-H. & Kim W.-S. Preparation of thermally denatured albumin gel and its pH-sensitive swelling . Int. J. Pharm. 175 , 231 – 236 ( 1998 ). 

  11. Rohanizadeh R. & Kokabi N. Heat denatured/aggregated albumin-based biomaterial: effects of preparation parameters on biodegradability and mechanical properties . J. Mater. Sci. Mater. Med . 20 , 2413 – 2418 ( 2009 ). 19847625 

  12. Baldwin A. D. & Kiick K. L. Reversible maleimide–thiol adducts yield glutathione-sensitive poly (ethylene glycol)–heparin hydrogels . Polym. Chem . 4 , 133 – 143 ( 2013 ). 23766781 

  13. Chong S. F. et al. Stabilization of Polymer‐Hydrogel Capsules via Thiol–Disulfide Exchange . Small 5 , 2601 – 2610 ( 2009 ). 19771568 

  14. Lee S.-Y. , Kim S. , Tyler J. Y. , Park K. & Cheng J.-X. Blood-stable, tumor-adaptable disulfide bonded mPEG-(Cys)-PDLLA micelles for chemotherapy . Biomaterials 34 , 552 – 561 ( 2013 ). 23079665 

  15. Liao Z.-X. , Hsiao C.-W. , Ho Y.-C. , Chen H.-L. & Sung H.-W. Disulfide bond-conjugated dual PEGylated siRNAs for prolonged multiple gene silencing . Biomaterials 34 , 6930 – 6937 ( 2013 ). 23769418 

  16. Palumbo F. S. , Pitarresi G. , Albanese A. , Calascibetta F. & Giammona G. Self-assembling and auto-crosslinkable hyaluronic acid hydrogels with a fibrillar structure . Acta Biomater. 6 , 195 – 204 ( 2010 ). 19531387 

  17. Wu D.-C. , Loh X. J. , Wu Y.-L. , Lay C. L. & Liu Y. ‘Living’Controlled in Situ Gelling Systems: Thiol− Disulfide Exchange Method toward Tailor-Made Biodegradable Hydroge ls. J. Am. Chem. Soc. 132 , 15140 – 15143 ( 2010 ). 20929223 

  18. Andersson L.-O. Reduction and reoxidation of the disulfide bonds of bovine serum albumin . Arch. Biochem. Biophys. 133 , 277 – 285 ( 1969 ). 5387562 

  19. Weiner J. , Widman S. , Golek Z. , Tranquilli M. & Elefteriades J. A. Role of Bovine Serum Albumin‐Glutaraldehyde Glue in the Formation of Anastomatic Pseudoaneurysms . J. Card. Surg . 26 , 76 – 81 ( 2011 ). 21114528 

  20. Hirose M. , Tachibana A. & Tanabe T. Recombinant human serum albumin hydrogel as a novel drug delivery vehicle . Materials Science and Engineering: C 30 , 664 – 669 ( 2010 ). 

  21. Tada D. , Tanabe T. , Tachibana A. & Yamauchi K. Albumin-crosslinked alginate hydrogels as sustained drug release carrier . Materials Science and Engineering: C 27 , 870 – 874 ( 2007 ). 

  22. Čemažar M. et al. Oxidative folding intermediates with nonnative disulfide bridges between adjacent cysteine residues . Proc. Natl. Acad. Sci . 100 , 5754 – 5759 ( 2003 ). 12724517 

  23. Johanson K. , Wetlaufer D. , Reed R. & Peters T. Refolding of bovine serum albumin and its proteolytic fragments. Regain of disulfide bonds, secondary structure, and ligand-binding ability . J. Biol. Chem. 256 , 445 – 450 ( 1981 ). 6161123 

  24. Sevier C. S. & Kaiser C. A. Formation and transfer of disulphide bonds in living cells . Nat. Rev. Mol. Cell Biol. 3 , 836 – 847 ( 2002 ). 12415301 

  25. Winterbourn C. C. & Hampton M. B. Thiol chemistry and specificity in redox signaling . Free Radical Biol. Med. 45 , 549 – 561 ( 2008 ). 18544350 

  26. Li P. S. et al. A Novel Albumin-Based Tissue Scaffold for Autogenic Tissue Engineering Applications . Sci. Rep . 4 ( 2014 ). doi: 10.1038/SREP05600 . 

  27. Swanekamp R. J. , Welch J. J. & Nilsson B. L. Proteolytic stability of amphipathic peptide hydrogels composed of self-assembled pleated β-sheet or coassembled rippled β-sheet fibrils . Chem. Commun. 50 , 10133 – 10136 ( 2014 ). 

  28. Majhi P. R. et al. Electrostatically driven protein aggregation: β-lactoglobulin at low ionic strength . Langmuir 22 , 9150 – 9159 ( 2006 ). 17042523 

  29. Oommen O. P. et al. Smart design of stable extracellular matrix mimetic hydrogel: synthesis, characterization, and in vitro and in vivo evaluation for tissue engineering . Adv. Funct. Mater. 23 , 1273 – 1280 ( 2013 ). 

  30. Annabi N. et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering . Tissue Engineering Part B: Reviews 16 , 371 – 383 ( 2010 ). 20121414 

  31. Ratner B. D. Presentation highlights: Tissue engineering . J. Rehabil. Res. Dev. 39 , 2 ( 2002 ). 

  32. Sussman E. M. , Halpin M. C. , Muster J. , Moon R. T. & Ratner B. D. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction . Ann. Biomed. Eng. 42 , 1508 – 1516 ( 2014 ). 24248559 

  33. Ganta S. , Devalapally H. , Shahiwala A. & Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery . J. Controlled Release 126 , 187 – 204 ( 2008 ). 

  34. Meng F. , Hennink W. E. & Zhong Z. Reduction-sensitive polymers and bioconjugates for biomedical applications . Biomaterials 30 , 2180 – 2198 ( 2009 ). 19200596 

  35. Pack D. W. , Hoffman A. S. , Pun S. & Stayton P. S. Design and development of polymers for gene delivery . Nature Reviews Drug Discovery 4 , 581 – 593 ( 2005 ). 16052241 

  36. Saito G. , Swanson J. A. & Lee K.-D. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities . Adv. Drug Del. Rev . 55 , 199 – 215 ( 2003 ). 

  37. Mandal B. B. , Kapoor S. & Kundu S. C. Silk fibroin/polyacrylamide semi-interpenetrating network hydrogels for controlled drug release . Biomaterials 30 , 2826 – 2836 ( 2009 ). 19203791 

  38. Fields R. Estimation of amino groups using tnbs . Methods Enzymol. 25 , 464 – 469 ( 1972 ). 23014427 

  39. Thirupathi Kumara Raja S. , Thiruselvi T. , Sailakshmi G. , Ganesh S. & Gnanamani A. Rejoining of cut wounds by engineered gelatin–keratin glue . Biochim. Biophys. Acta, Gen. Subj . 1830 , 4030 – 4039 ( 2013 ). 

  40. Wallin R. & Arscott E. A practical guide to ISO 10993-5: Cytotoxicity . MEDICAL DEVICE AND DIAGNOSTIC INDUSTRY 20 , 96 – 98 ( 1998 ). 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로