$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Silk-hydrogel Lenses for Light-emitting Diodes 원문보기

Scientific reports, v.7, 2017년, pp.7258 -   

Melikov, Rustamzhon (Department of Electrical and Electronics Engineering, Koc University, 34450 Sariyer, Istanbul Turkey) ,  Press, Daniel Aaron (Department of Electrical and Electronics Engineering, Koc University, 34450 Sariyer, Istanbul Turkey) ,  Kumar, Baskaran Ganesh (Department of Electrical and Electronics Engineering, Koc University, 34450 Sariyer, Istanbul Turkey) ,  Dogru, Itir Bakis (Graduate School of Biomedical Sciences and Engineering, Koc University, 34450 Sariyer, Istanbul Turkey) ,  Sadeghi, Sadra (Graduate School of Materials Science and Engineering, Koc University, 34450 Sariyer, Istanbul Turkey) ,  Chirea, Mariana (Department of Electrical and Electronics Engineering, Koc University, 34450 Sariyer, Istanbul Turkey) ,  Yılgör, İskender (Department of Chemistry, Koc University, 34450 Sariyer, Istanbul Turkey) ,  Nizamoglu, Sedat (Department of Electrical and Electronics Engineering, Koc University, 34450 Sariyer, Istanbul Turkey)

Abstract AI-Helper 아이콘AI-Helper

Today the high demand for electronics leads to massive production of waste, thus green materials based electronic devices are becoming more important for environmental protection and sustainability. The biomaterial based hydrogels are widely used in tissue engineering, but their uses in photonics ar...

참고문헌 (38)

  1. 1. Kyle, B. New EPA Report Shows We are Generating More E-waste But Also Recycling More. http://www.electronicstakeback.com/2013/06/24/new-epa-report-shows-we-are-generating-more-e-waste-but-also-recycling-more (2013). 

  2. 2. Sesini, M. The garbage patch in the oceans: the problem and possible solutions Columbia University, New York (2011). 

  3. 3. Akasaki, I., H. Amano and S. Nakamura The Nobel Prize in Physics 2014 (2014). 

  4. 4. Chien C-LC Polymer dispensing and embossing technology for the lens type LED packaging Journal of Micromechanics and Microengineering 2013 23 6 065019 10.1088/0960-1317/23/6/065019 

  5. 5. Irvine-Halliday, D., R. Peon, G. Doluweera, I. Platonova and G. Irvine-Halliday Solid-state lighting: the only solution for the developing world. SPIE Newsroom , 10(2.1200601 ) , p. 0056 (2006). 

  6. 6. Bergh A Craford G Duggal A Haitz R The promise and challenge of solid-state lighting Physics today 2001 54 12 42 47 10.1063/1.1445547 

  7. 7. Moran, B. Light-Emitting Diodes (LEDs) for Lighting Applications. BCC Research paper (2014). 

  8. 8. Schubert, E.F., Gessmann, T. and Kim, J. K. Light emitting diodes 193 (Wiley Online Library, 2005). 

  9. 9. Eberspacher, C. and Fthenakis, V. M. Disposal and recycling of end-of-life PV modules. In Photovoltaic Specialists Conference, Conference Record of the Twenty-Sixth IEEE . IEEE (1997). 

  10. 10. Irimia-Vladu M “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future Chemical Society Reviews 2014 43 2 588 610 10.1039/C3CS60235D 24121237 

  11. 11. Hoffman AS Hydrogels for biomedical applications Advanced drug delivery reviews 2012 64 18 23 10.1016/j.addr.2012.09.010 

  12. 12. Choi M Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo Nature photonics 2013 7 12 987 994 10.1038/nphoton.2013.278 25346777 

  13. 13. Min B-M Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro Biomaterials 2004 25 7 1289 1297 10.1016/j.biomaterials.2003.08.045 14643603 

  14. 14. Motta A Fibroin hydrogels for biomedical applications: preparation, characterization and in vitro cell culture studies Journal of biomaterials science, Polymer edition 2004 15 7 851 864 10.1163/1568562041271075 15318796 

  15. 15. Murphy AR Kaplan DL Biomedical applications of chemically-modified silk fibroin Journal of materials chemistry 2009 19 36 6443 6450 10.1039/b905802h 20161439 

  16. 16. Nicolson PC Vogt J Soft contact lens polymers: an evolution Biomaterials 2001 22 24 3273 3283 10.1016/S0142-9612(01)00165-X 11700799 

  17. 17. Partlow BP Highly tunable elastomeric silk biomaterials Advanced functional materials 2014 24 29 4615 4624 10.1002/adfm.201400526 25395921 

  18. 18. Mitropoulos AN Transparent, nanostructured silk fibroin hydrogels with tunable mechanical properties ACS Biomaterials Science & Engineering 2015 1 10 964 970 10.1021/acsbiomaterials.5b00215 

  19. 19. Zhao S Bio-functionalized silk hydrogel microfluidic systems Biomaterials 2016 93 60 70 10.1016/j.biomaterials.2016.03.041 27077566 

  20. 20. Applegate, M.B., C. Alonzo, I. Georgakoudi, D.L. Kaplan and F.G. Omenetto, A simple model of multiphoton micromachining in silk hydrogels. Applied Physics Letters , 108 (24) (2016) 

  21. 21. Applegate MB Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds Proceedings of the National Academy of Sciences 2015 112 39 12052 12057 10.1073/pnas.1509405112 

  22. 22. Zhang DY Lien V Berdichevsky Y Choi J Lo YH Fluidic adaptive lens with high focal length tunability Applied Physics Letters 2003 82 19 3171 3172 10.1063/1.1573337 

  23. 23. Sher CW A high quality liquid-type quantum dot white light-emitting diode Nanoscale 2016 8 2 1117 1122 10.1039/C5NR05676D 26666455 

  24. 24. Nizamoglu, S. et al . Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nature communications 7 (2016). 

  25. 25. Asakura T Watanabe Y Itoh T NMR of Silk Fibroin. 3. Assignment of Carbonyl Carbon Resonances and Their Dependence on Sequence and Conformation in Bombyx mori Silk Fibroin Using Selective Isotopic Labeling Macromolecules. 1984 17 2421 2426 10.1021/ma00141a036 

  26. 26. Asakura T Yoshimizu H Yoshizawa Y NMR of Silk Fibroin. 9. Sequence and Conformation Analyses of the Silk Fibroins from Bombyx mori and Philosamia Cynthia ricini by I5N NMR Spectroscopy Macromolecules 1988 21 2038 2041 10.1021/ma00185a026 

  27. 27. Asakura, T.; Kaplan, D. L. Encyclopedia of Agricultural Science (ed. Arutzen, C. J.,) 1-11 (Academic Press: New York, Vol. 4, 1994). 

  28. 28. Asakura T Kuzuhara A Tabeta R Saitô H Conformation Characterization of Bombyx mori Silk Fibroin in the Solid State by High-Frequency 13C Cross Polarization-Magic Angle Spinning NMR, X-ray Diffraction, and Infrared Spectroscopy Macromolecules. 1985 18 1841 1845 10.1021/ma00152a009 

  29. 29. Takahashi Y Gehoh M Yuzuriha K Structure refinement and diffuse streak scattering of silk (Bombyx mori) Int. J. Biol. Macromolecules 1999 24 127 138 10.1016/S0141-8130(98)00080-4 

  30. 30. Rodríguez-López N Mechanism of Reaction of Hydrogen Peroxide with Horseradish Peroxidase: Identification of Intermediates in the Catalytic Cycle J. Am. Chem. Soc. 2001 123 11838 10.1021/ja011853+ 11724589 

  31. 31. Venyaminov SY Prendergast FG Water (H 2 O and D 2 O) molar absorptivity in the 1000–4000 cm− 1 range and quantitative infrared spectroscopy of aqueous solutions Analytical biochemistry. 1997 248 2 234 245 10.1006/abio.1997.2136 9177749 

  32. 32. Nagarkar S Nicolai T Chassenieux C Lele A Structure and gelation mechanism of silk hydrogels Physical Chemistry Chemical Physics 2010 12 15 3834 3844 10.1039/b916319k 20358077 

  33. 33. Peppas NA Hilt JZ Khademhosseini A Langer R Hydrogels in biology and medicine: from molecular principles to bionanotechnology Advanced Materials 2006 18 11 1345 1360 10.1002/adma.200501612 

  34. 34. Yeh J Micromolding of shape-controlled, harvestable cell-laden hydrogels Biomaterials. 2006 27 31 5391 5398 10.1016/j.biomaterials.2006.06.005 16828863 

  35. 35. Dong L Agarwal AK Beebe DJ Jiang H Adaptive liquid microlenses activated by stimuli-responsive hydrogels Nature 2006 442 7102 551 554 10.1038/nature05024 16885981 

  36. 36. Yilgor I Yilgor E Structure‐Morphology‐Property Behavior of Segmented Thermoplastic Polyurethanes and Polyureas Prepared without Chain Extenders Polymer Reviews. 2007 47 4 487 510 10.1080/15583720701638260 

  37. 37. Bourtoom T Edible films and coatings: characteristics and properties International Food Research Journal 2008 15 3 1 12 

  38. 38. Rockwood DN Materials fabrication from Bombyx mori silk fibroin Nature protocols. 2011 6 10 1612 1631 10.1038/nprot.2011.379 21959241 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로