$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Graphene–Semiconductor Catalytic Nanodiodes for Quantitative Detection of Hot Electrons Induced by a Chemical Reaction

Nano letters : a journal dedicated to nanoscience and nanotechnology, v.16 no.3, 2016년, pp.1650 - 1656  

Lee, Hyosun (Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,) ,  Nedrygailov, Ievgen I. (Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,) ,  Lee, Young Keun (Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,) ,  Lee, Changhwan (Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,) ,  Choi, Hongkyw (Creative Research Center for Graphene Electronics, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129,) ,  Choi, Jin Sik (Creative Research Center for Graphene Electronics, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129,) ,  Choi, Choon-Gi (Creative Research Center for Graphene Electronics, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129,) ,  Park, Jeong Young (Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,)

Abstract AI-Helper 아이콘AI-Helper

Direct detection of hot electrons generated by exothermic surface reactions on nanocatalysts is an effective strategy to obtain insight into electronic excitation during chemical reactions. For this purpose, we fabricated a novel catalytic nanodiode based on a Schottky junction between a single laye...

주제어

참고문헌 (53)

  1. Park, Jeong Young, Baker, L. Robert, Somorjai, Gabor A.. Role of Hot Electrons and Metal-Oxide Interfaces in Surface Chemistry and Catalytic Reactions. Chemical reviews, vol.115, no.8, 2781-2817.

  2. Somorjai, Gabor A., Park, Jeong Y.. Molecular Factors of Catalytic Selectivity. Angewandte Chemie. international edition, vol.47, no.48, 9212-9228.

  3. Wodtke, A.M., Matsiev, D., Auerbach, D.J.. Energy transfer and chemical dynamics at solid surfaces: The special role of charge transfer. Progress in surface science, vol.83, no.3, 167-214.

  4. Park, Jeong Young, Kim, Sun Mi, Lee, Hyosun, Nedrygailov, Ievgen I.. Hot-Electron-Mediated Surface Chemistry: Toward Electronic Control of Catalytic Activity. Accounts of chemical research, vol.48, no.8, 2475-2483.

  5. Frischkorn, C., Wolf, M.. Femtochemistry at Metal Surfaces: Nonadiabatic Reaction Dynamics. Chemical reviews, vol.106, no.10, 4207-4233.

  6. Park, Jeong Young, Somorjai, Gabor A.. The Catalytic Nanodiode: Detecting Continous Electron Flow at Oxide–Metal Interfaces Generated by a Gas‐Phase Exothermic Reaction. Chemphyschem : a European journal of chemical physics and physical chemistry, vol.7, no.7, 1409-1413.

  7. Bonn, M., Funk, S., Hess, Ch., Denzler, D. N., Stampfl, C., Scheffler, M., Wolf, M., Ertl, G.. Phonon- Versus Electron-Mediated Desorption and Oxidation of CO on Ru(0001). Science, vol.285, no.5430, 1042-1045.

  8. Stipe, B. C., Rezaei, M. A., Ho, W.. Inducing and Viewing the Rotational Motion of a Single Molecule. Science, vol.279, no.5358, 1907-1909.

  9. Lee, Junseok, Sorescu, Dan C., Deng, Xingyi. Electron-Induced Dissociation of CO2 on TiO2(110). Journal of the American Chemical Society, vol.133, no.26, 10066-10069.

  10. Boffa, A., Lin, C., Bell, A.T., Somorjai, G.A.. Promotion of CO and CO2 Hydrogenation over Rh by Metal Oxides: The Influence of Oxide Lewis Acidity and Reducibility. Journal of catalysis, vol.149, no.1, 149-158.

  11. Kim, Sun Mi, Lee, Hyosun, Park, Jeong Young. Charge Transport in Metal-Oxide Interfaces: Genesis and Detection of Hot Electron Flow and Its Role in Heterogeneous Catalysis. Catalysis letters, vol.145, no.1, 299-308.

  12. Bai, Yu, Zhang, Wenhua, Zhang, Zhenhua, Zhou, Jie, Wang, Xijun, Wang, Chengming, Huang, Weixin, Jiang, Jun, Xiong, Yujie. Controllably Interfacing with Metal: A Strategy for Enhancing CO Oxidation on Oxide Catalysts by Surface Polarization. Journal of the American Chemical Society, vol.136, no.42, 14650-14653.

  13. Goddeti, Kalyan C., Kim, Sun Mi, Lee, Young Keun, Kim, Sang Hoon, Park, Jeong Young. Chemical Doping of TiO2 with Nitrogen and Fluorine and Its Support Effect on Catalytic Activity of CO Oxidation. Catalysis letters, vol.144, no.8, 1411-1417.

  14. Calaza, Florencia, Stiehler, Christian, Fujimori, Yuichi, Sterrer, Martin, Beeg, Sebastian, Ruiz‐Oses, Miguel, Nilius, Niklas, Heyde, Markus, Parviainen, Teemu, Honkala, Karoliina, Häkkinen, Hannu, Freund, Hans‐Joachim. Carbon Dioxide Activation and Reaction Induced by Electron Transfer at an Oxide–Metal Interface. Angewandte Chemie. international edition, vol.54, no.42, 12484-12487.

  15. Nienhaus, Hermann. Electronic excitations by chemical reactions on metal surfaces. Surface science reports, vol.45, no.1, 1-78.

  16. Ji, X., Zuppero, A., Gidwani, J. M., Somorjai, G. A.. The Catalytic Nanodiode: Gas Phase Catalytic Reaction Generated Electron Flow Using Nanoscale Platinum Titanium Oxide Schottky Diodes. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.5, no.4, 753-756.

  17. Park, J. Y., Renzas, J. R., Hsu, B. B., Somorjai, G. A.. Interfacial and Chemical Properties of Pt/TiO2, Pd/TiO2, and Pt/GaN Catalytic Nanodiodes Influencing Hot Electron Flow. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.111, no.42, 15331-15336.

  18. Hervier, Antoine, Renzas, J. Russell, Park, Jeong Y., Somorjai, Gabor A.. Hydrogen Oxidation-Driven Hot Electron Flow Detected by Catalytic Nanodiodes. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.9, no.11, 3930-3933.

  19. Renzas, James Russell, Somorjai, Gabor A.. Rh Thin-Film Nanocatalysts as Chemical Sensors ? The Hot Electron Effect. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.114, no.41, 17660-17664.

  20. Karpov, E. G., Nedrygailov, I. I.. Solid-state electric generator based on chemically induced internal electron emission in metal-semiconductor heterojunction nanostructures. Applied physics letters, vol.94, no.21, 214101-.

  21. Karpov, Eduard G., Nedrygailov, Ievgen. Nonadiabatic chemical-to-electrical energy conversion in heterojunction nanostructures. Physical review. B, Condensed matter and materials physics, vol.81, no.20, 205443-.

  22. Prietsch, Mario. Ballistic-electron emission microscopy (BEEM): studies of metal/semiconductor interfaces with nanometer resolution. Physics reports, vol.253, no.4, 163-233.

  23. Park, Jeong Y., Lee, Hyunjoo, Renzas, J. Russell, Zhang, Yawen, Somorjai, Gabor A.. Probing Hot Electron Flow Generated on Pt Nanoparticles with Au/TiO2 Schottky Diodes during Catalytic CO Oxidation. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.8, no.8, 2388-2392.

  24. Lee, Hyosun, Nedrygailov, Ievgen I., Lee, Changhwan, Somorjai, Gabor A., Park, Jeong Young. Chemical‐Reaction‐Induced Hot Electron Flows on Platinum Colloid Nanoparticles under Hydrogen Oxidation: Impact of Nanoparticle Size. Angewandte Chemie. international edition, vol.54, no.8, 2340-2344.

  25. Narayanan, R., El-Sayed, M. A.. Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.4, no.7, 1343-1348.

  26. Grass, Michael E., Zhang, Yawen, Butcher, Derek R., Park, Jeong Y., Li, Yimin, Bluhm, Hendrik, Bratlie, Kaitlin M., Zhang, Tianfu, Somorjai, Gabor A.. A Reactive Oxide Overlayer on Rhodium Nanoparticles during CO Oxidation and Its Size Dependence Studied by In Situ Ambient-Pressure X-ray Photoelectron Spectroscopy. Angewandte Chemie. international edition, vol.47, no.46, 8893-8896.

  27. Joo, Sang Hoon, Park, Jeong Y., Renzas, J. Russell, Butcher, Derek R., Huang, Wenyu, Somorjai, Gabor A.. Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.10, no.7, 2709-2713.

  28. An, Kwangjin, Somorjai, Gabor A.. Size and Shape Control of Metal Nanoparticles for Reaction Selectivity in Catalysis. ChemCatChem, vol.4, no.10, 1512-1524.

  29. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A.. Electric Field Effect in Atomically Thin Carbon Films. Science, vol.306, no.5696, 666-669.

  30. Novoselov, K. S., Fal??o, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., Kim, K.. A roadmap for graphene. Nature, vol.490, no.7419, 192-200.

  31. Bonaccorso, Francesco, Colombo, Luigi, Yu, Guihua, Stoller, Meryl, Tozzini, Valentina, Ferrari, Andrea C., Ruoff, Rodney S., Pellegrini, Vittorio. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, vol.347, no.6217, 1246501-1246501.

  32. Guo, Shaojun, Dong, Shaojun, Wang, Erkang. Three-Dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation. ACS nano, vol.4, no.1, 547-555.

  33. Guo, Shaojun, Wen, Dan, Zhai, Yueming, Dong, Shaojun, Wang, Erkang. Platinum Nanoparticle Ensemble-on-Graphene Hybrid Nanosheet: One-Pot, Rapid Synthesis, and Used as New Electrode Material for Electrochemical Sensing. ACS nano, vol.4, no.7, 3959-3968.

  34. Huang, Cancan, Li, Chun, Shi, Gaoquan. Graphene based catalysts. Energy & environmental science, vol.5, no.10, 8848-8868.

  35. Yin, Perry T., Shah, Shreyas, Chhowalla, Manish, Lee, Ki-Bum. Design, Synthesis, and Characterization of Graphene–Nanoparticle Hybrid Materials for Bioapplications. Chemical reviews, vol.115, no.7, 2483-2531.

  36. Xu, F., Sun, Y., Zhang, Y., Shi, Y., Wen, Z., Li, Z.. Graphene-Pt nanocomposite for nonenzymatic detection of hydrogen peroxide with enhanced sensitivity. Electrochemistry communications, vol.13, no.10, 1131-1134.

  37. Balandin, Alexander A., Ghosh, Suchismita, Bao, Wenzhong, Calizo, Irene, Teweldebrhan, Desalegne, Miao, Feng, Lau, Chun Ning. Superior Thermal Conductivity of Single-Layer Graphene. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.8, no.3, 902-907.

  38. Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E. P., Nika, D. L., Balandin, A. A., Bao, W., Miao, F., Lau, C. N.. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied physics letters, vol.92, no.15, 151911-.

  39. Balandin, Alexander A.. Thermal properties of graphene and nanostructured carbon materials. Nature materials, vol.10, no.8, 569-581.

  40. Li, Y., Tang, L., Li, J.. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites. Electrochemistry communications, vol.11, no.4, 846-849.

  41. Xiao, Yu-Ping, Wan, Shuo, Zhang, Xing, Hu, Jin-Song, Wei, Zi-Dong, Wan, Li-Jun. Hanging Pt hollow nanocrystal assemblies on graphene resulting in an enhanced electrocatalyst. Chemical communications : Chem comm, vol.48, no.83, 10331-10333.

  42. Giovannetti, G., Khomyakov, P. A., Brocks, G., Karpan, V. M., van den Brink, J., Kelly, P. J.. Doping Graphene with Metal Contacts. Physical review letters, vol.101, no.2, 026803-.

  43. Lee, Hyosun, Lee, Young Keun, Hwang, Euyheon, Park, Jeong Young. Enhanced Surface Plasmon Effect of Ag/TiO2 Nanodiodes on Internal Photoemission. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.118, no.11, 5650-5656.

  44. Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., Novoselov, K. S.. Detection of individual gas molecules adsorbed on graphene. Nature materials, vol.6, no.9, 652-655.

  45. Leenaerts, O., Partoens, B., Peeters, F. M.. Adsorption ofH2O,NH3, CO,NO2, and NO on graphene: A first-principles study. Physical review. B, Condensed matter and materials physics, vol.77, no.12, 125416-.

  46. Physics of Semiconductor Devices Sze S. M. 2006 10.1002/0470068329 

  47. Hellsing, B., Kasemo, B., Ljungström, S., Rosén, A., Wahnström, T.. Kinetic model and experimental results for H2O and OH production rates on Pt. Surface science, vol.189, 851-860.

  48. Ljungström, S., Kasemo, B., Rosen, A., Wahnström, T., Fridell, E.. An experimental study of the kinetics of OH and H2O formation on Pt in the H2 + O2 reaction. Surface science, vol.216, no.1, 63-92.

  49. Williams, W. R., Marks, C. M., Schmidt, L. D.. Steps in the reaction hydrogen + oxygen .dblharw. water on platinum: hydroxy desorption at high temperatures. The Journal of physical chemistry, vol.96, no.14, 5922-5931.

  50. Schefer, R.W.. Catalyzed combustion of H2/air mixtures in a flat plate boundary layer: II. Numerical model. Combustion and flame, vol.45, 171-190.

  51. Chaves, Ferney A., Jiménez, David, Cummings, Aron W., Roche, Stephan. Physical model of the contact resistivity of metal-graphene junctions. Journal of applied physics, vol.115, no.16, 164513-.

  52. Yang, Heejun, Heo, Jinseong, Park, Seongjun, Song, Hyun Jae, Seo, David H., Byun, Kyung-Eun, Kim, Philip, Yoo, InKyeong, Chung, Hyun-Jong, Kim, Kinam. Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier. Science, vol.336, no.6085, 1140-1143.

  53. Byun, Kyung-Eun, Chung, Hyun-Jong, Lee, Jaeho, Yang, Heejun, Song, Hyun Jae, Heo, Jinseong, Seo, David H., Park, Seongjun, Hwang, Sung Woo, Yoo, InKyeong, Kim, Kinam. Graphene for True Ohmic Contact at Metal–Semiconductor Junctions. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.13, no.9, 4001-4005.

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로