$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Photolithography-Based Patterning of Liquid Metal Interconnects for Monolithically Integrated Stretchable Circuits

ACS applied materials & interfaces, v.8 no.24, 2016년, pp.15459 - 15465  

Park, Chan Woo (Wearable Device Research Section, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-ro, Yuseong-gu, Daejeon 34129,) ,  Moon, Yu Gyeong (Wearable Device Research Section, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-ro, Yuseong-gu, Daejeon 34129,) ,  Seong, Hyejeong (Department of Chemical and Biomolecular Engineering & Graphene Research Center KI for Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141,) ,  Jung, Soon Won (Wearable Device Research Section, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-ro, Yuseong-gu, Daejeon 34129,) ,  Oh, Ji-Young (Wearable Device Research Section, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-ro, Yuseong-gu, Daejeon 34129,) ,  Na, Bock Soon (Wearable Device Research Section, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-ro, Yuseong-gu, Daejeon 34129,) ,  Park, Nae-Man (Wearable Device Research Section, Electronics and Telecommunications Research Institute (ETR) ,  Lee, Sang Seok ,  Im, Sung Gap ,  Koo, Jae Bon

Abstract AI-Helper 아이콘AI-Helper

We demonstrate a new patterning technique for gallium-based liquid metals on flat substrates, which can provide both high pattern resolution (similar to 20 mu m) and alignment precision as required for highly integrated circuits. In a very similar manner as in the patterning of solid metal films by ...

주제어

참고문헌 (44)

  1. Kim, Dae-Hyeong, Xiao, Jianliang, Song, Jizhou, Huang, Yonggang, Rogers, John A.. Stretchable, Curvilinear Electronics Based on Inorganic Materials. Advanced materials, vol.22, no.19, 2108-2124.

  2. Sekitani, Tsuyoshi, Noguchi, Yoshiaki, Hata, Kenji, Fukushima, Takanori, Aida, Takuzo, Someya, Takao. A Rubberlike Stretchable Active Matrix Using Elastic Conductors. Science, vol.321, no.5895, 1468-1472.

  3. Gray, D. S., Tien, J., Chen, C. S.. High-Conductivity Elastomeric Electronics. Advanced materials, vol.16, no.5, 393-397.

  4. Son, Donghee, Koo, Ja Hoon, Song, Jun-Kyul, Kim, Jaemin, Lee, Mincheol, Shim, Hyung Joon, Park, Minjoon, Lee, Minbaek, Kim, Ji Hoon, Kim, Dae-Hyeong. Stretchable Carbon Nanotube Charge-Trap Floating-Gate Memory and Logic Devices for Wearable Electronics. ACS nano, vol.9, no.5, 5585-5593.

  5. Kim, Dae-Hyeong, Kim, Yun-Soung, Wu, Jian, Liu, Zhuangjian, Song, Jizhou, Kim, Hoon-Sik, Huang, Yonggang Y., Hwang, Keh-Chih, Rogers, John A.. Ultrathin Silicon Circuits With Strain-Isolation Layers and Mesh Layouts for High-Performance Electronics on Fabric, Vinyl, Leather, and Paper. Advanced materials, vol.21, no.36, 3703-3707.

  6. Verplancke, R, Bossuyt, F, Cuypers, D, Vanfleteren, J. Thin-film stretchable electronics technology based on meandering interconnections: fabrication and mechanical performance. Journal of micromechanics and microengineering.: structures, devices, and systems, vol.22, no.1, 015002-.

  7. Park, C.W., Jung, S.W., Lim, S.C., Oh, J.Y., Na, B.S., Lee, S.S., Chu, H.Y., Koo, J.B.. Fabrication of well-controlled wavy metal interconnect structures on stress-free elastomeric substrates. Microelectronic engineering, vol.113, 55-60.

  8. Park, Chan Woo, Jung, Soon Won, Na, Bock Soon, Oh, Ji-Young, Park, Nae-Man, Seok Lee, Sang, Bon Koo, Jae. Locally-tailored structure of an elastomeric substrate for stretchable circuits. Semiconductor science and technology, vol.31, no.2, 025013-.

  9. Park, Chan Woo, Jung, Soon Won, Lim, Sang Chul, Oh, Ji-Young, Na, Bock Soon, Lee, Sang Seok, Chu, Hye Yong, Koo, Jae Bon. Stretchable copper interconnects with three-dimensional coiled structures. Journal of micromechanics and microengineering.: structures, devices, and systems, vol.23, no.12, 127002-.

  10. Sekitani, Tsuyoshi, Nakajima, Hiroyoshi, Maeda, Hiroki, Fukushima, Takanori, Aida, Takuzo, Hata, Kenji, Someya, Takao. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nature materials, vol.8, no.6, 494-499.

  11. Matsuhisa, Naoji, Kaltenbrunner, Martin, Yokota, Tomoyuki, Jinno, Hiroaki, Kuribara, Kazunori, Sekitani, Tsuyoshi, Someya, Takao. Printable elastic conductors with a high conductivity for electronic textile applications. Nature communications, vol.6, 7461-.

  12. Araki, T., Nogi, M., Suganuma, K., Kogure, M., Kirihara, O.. Printable and Stretchable Conductive Wirings Comprising Silver Flakes and Elastomers. IEEE electron device letters : a publication of the IEEE Electron Devices Society, vol.32, no.10, 1424-1426.

  13. Dickey, Michael D.. Emerging Applications of Liquid Metals Featuring Surface Oxides. ACS applied materials & interfaces, vol.6, no.21, 18369-18379.

  14. Zhu, Shu, So, Ju‐Hee, Mays, Robin, Desai, Sharvil, Barnes, William R., Pourdeyhimi, Behnam, Dickey, Michael D.. Ultrastretchable Fibers with Metallic Conductivity Using a Liquid Metal Alloy Core. Advanced functional materials, vol.23, no.18, 2308-2314.

  15. Kim, Hyun-Joong, Son, Chulwoo, Ziaie, Babak. A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels. Applied physics letters, vol.92, no.1, 011904-.

  16. So, Ju-Hee, Thelen, Jacob, Qusba, Amit, Hayes, Gerard J., Lazzi, Gianluca, Dickey, Michael D.. Reversibly Deformable and Mechanically Tunable Fluidic Antennas. Advanced functional materials, vol.19, no.22, 3632-3637.

  17. Qusba, Amit, RamRakhyani, Anil Kumar, Ju-Hee So, Hayes, Gerard J., Dickey, Michael D., Lazzi, Gianluca. On the Design of Microfluidic Implant Coil for Flexible Telemetry System. IEEE sensors journal, vol.14, no.4, 1074-1080.

  18. Park, Yong-Lae, Majidi, Carmel, Kramer, Rebecca, Bérard, Phillipe, Wood, Robert J. Hyperelastic pressure sensing with a liquid-embedded elastomer. Journal of micromechanics and microengineering.: structures, devices, and systems, vol.20, no.12, 125029-.

  19. Matsuzaki, Ryosuke, Tabayashi, Kosuke. Highly Stretchable, Global, and Distributed Local Strain Sensing Line Using GaInSn Electrodes for Wearable Electronics. Advanced functional materials, vol.25, no.25, 3806-3813.

  20. Joshipura, Ishan D., Ayers, Hudson R., Majidi, Carmel, Dickey, Michael D.. Methods to pattern liquid metals. Journal of materials chemistry. C, Materials for optical and electronic devices, vol.3, no.16, 3834-3841.

  21. Jeong, Seung Hee, Hagman, Anton, Hjort, Klas, Jobs, Magnus, Sundqvist, Johan, Wu, Zhigang. Liquid alloy printing of microfluidic stretchable electronics. Lab on a chip, vol.12, no.22, 4657-.

  22. Tabatabai, Arya, Fassler, Andrew, Usiak, Claire, Majidi, Carmel. Liquid-Phase Gallium–Indium Alloy Electronics with Microcontact Printing. Langmuir : the ACS journal of surfaces and colloids, vol.29, no.20, 6194-6200.

  23. Jeong, Seung Hee, Hjort, Klas, Wu, Zhigang. Tape Transfer Atomization Patterning of Liquid Alloys for Microfluidic Stretchable Wireless Power Transfer. Scientific reports, vol.5, 8419-.

  24. Zheng, Yi, He, Zhi-Zhu, Yang, Jun, Liu, Jing. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. Scientific reports, vol.4, 4588-.

  25. Wang, Qian, Yu, Yang, Yang, Jun, Liu, Jing. Fast Fabrication of Flexible Functional Circuits Based on Liquid Metal Dual‐Trans Printing. Advanced materials, vol.27, no.44, 7109-7116.

  26. Boley, J. William, White, Edward L., Chiu, George T.‐C., Kramer, Rebecca K.. Direct Writing of Gallium‐Indium Alloy for Stretchable Electronics. Advanced functional materials, vol.24, no.23, 3501-3507.

  27. Zheng, Yi, He, Zhizhu, Gao, Yunxia, Liu, Jing. Direct Desktop Printed-Circuits-on-Paper Flexible Electronics. Scientific reports, vol.3, 1786-.

  28. Gao, Yunxia, Li, Haiyan, Liu, Jing. Direct Writing of Flexible Electronics through Room Temperature Liquid Metal Ink. PloS one, vol.7, no.9, e45485-.

  29. Li, Haiyan, Yang, Liu, Jing. Printable tiny thermocouple by liquid metal gallium and its matching metal. Applied physics letters, vol.101, no.7, 073511-.

  30. Zhang, Qin, Zheng, Yi, Liu, Jing. Direct writing of electronics based on alloy and metal (DREAM) ink: A newly emerging area and its impact on energy, environment and health sciences. Frontiers in energy, vol.6, no.4, 311-340.

  31. Lu, Tong, Finkenauer, Lauren, Wissman, James, Majidi, Carmel. Rapid Prototyping for Soft‐Matter Electronics. Advanced functional materials, vol.24, no.22, 3351-3356.

  32. Kramer, Rebecca K., Majidi, Carmel, Wood, Robert J.. Masked Deposition of Gallium‐Indium Alloys for Liquid‐Embedded Elastomer Conductors. Advanced functional materials, vol.23, no.42, 5292-5296.

  33. Li, G., Wu, X., Lee, D.W.. Selectively plated stretchable liquid metal wires for transparent electronics. Sensors and actuators. B, Chemical, vol.221, 1114-1119.

  34. Gozen, B. Arda, Tabatabai, Arya, Ozdoganlar, O. Burak, Majidi, Carmel. High‐Density Soft‐Matter Electronics with Micron‐Scale Line Width. Advanced materials, vol.26, no.30, 5211-5216.

  35. Tan, Christine P., Craighead, Harold G.. Surface Engineering and Patterning Using Parylene for Biological Applications. Materials, vol.3, no.3, 1803-1832.

  36. 10.6023/A13060678 

  37. Seong, Hyejeong, Baek, Jieung, Pak, Kwanyong, Im, Sung Gap. A Surface Tailoring Method of Ultrathin Polymer Gate Dielectrics for Organic Transistors: Improved Device Performance and the Thermal Stability Thereof. Advanced functional materials, vol.25, no.28, 4462-4469.

  38. Boley, John William, White, Edward L., Kramer, Rebecca K.. Mechanically Sintered Gallium–Indium Nanoparticles. Advanced materials, vol.27, no.14, 2355-2360.

  39. Jeong, Seung Hee, Hjort, Klas, Wu, Zhigang. Tape Transfer Printing of a Liquid Metal Alloy for Stretchable RF Electronics. Sensors, vol.14, no.9, 16311-16321.

  40. Jung, Soon-Won, Choi, Jeong-Seon, Koo, Jae Bon, Park, Chan Woo, Na, Bock Soon, Oh, Ji-Young, Lee, Sang Seok, Chu, Hye Yong. Stretchable Organic Thin-Film Transistors Fabricated on Elastomer Substrates Using Polyimide Stiff-Island Structures. ECS solid state letters : SSL, vol.4, no.1, P1-P3.

  41. Jung, Soon-Won, Koo, Jae Bon, Park, Chan Woo, Na, Bock Soon, Oh, Ji-Young, Lee, Sang Seok. Fabrication of Stretchable Organic-Inorganic Hybrid Thin-Film Transistors on Polyimide Stiff-Island Structures. Journal of nanoscience and nanotechnology, vol.15, no.10, 7526-7530.

  42. Lacour, Stéphanie P., Wagner, Sigurd, Narayan, Roger J., Li, Teng, Suo, Zhigang. Stiff subcircuit islands of diamondlike carbon for stretchable electronics. Journal of applied physics, vol.100, no.1, 014913-.

  43. Bhattacharya, Rabin, Salomon, Ashley, Wagner, Sigurd. Fabricating Metal Interconnects for Circuits on a Spherical Dome. Journal of the Electrochemical Society : JES, vol.153, no.3, G259-.

  44. Lu, Nanshu, Yoon, Juil, Suo, Zhigang. Delamination of stiff islands patterned on stretchable substrates. International journal of materials research, vol.98, no.8, 717-722.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로