$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Metabolic engineering of methanotrophs and its application to production of chemicals and biofuels from methane

Biofuels, bioproducts & biorefining : Biofpr, v.10 no.6, 2016년, pp.848 - 863  

Lee, Ok Kyung (Department of Chemical Engineering, Kyung Hee University, Gyeonggi‐) ,  Hur, Dong Hoon (do, 446‐) ,  Nguyen, Diep Thi Ngoc (701, Korea) ,  Lee, Eun Yeol (Department of Chemical Engineering, Kyung Hee University, Gyeonggi‐)

Abstract AI-Helper 아이콘AI-Helper

Methane-assimilating bacteria, methanotrophs, can play an important role in producing various value-added chemicals and biofuels from methane, which is considered a next-generation carbon feedstock. The capability to engineer the metabolic pathway of methanotrophs is a key success factor for enhanci...

주제어

참고문헌 (112)

  1. Haynes CA and Gonzalez R , Rethinking biological activation of methane and conversion to liquid fuels . Nat Chem Biol 10 : 331 – 339 ( 2014 ). 

  2. Fei Q , Guarnieri MT , Tao L , Laurens LML , Dowe N and Pienkos PT , Bioconversion of natural gas to liquid fuel: Opportunities and challenges . Biotechnol Adv 32 : 596 – 614 ( 2014 ). 

  3. Energy Information Administration , Annual Energy Outlook 2015 (AEO2015). [Online]. EIA ( 2015 ). Available at: http://www.eia.gov/forecasts/aeo/pdf/0383(2015).pdf [July 27, 2016]. 

  4. Hwang IY , Lee SH , Choi YS , Park SJ , Na JG , Chang IS et al., Biocatalytic conversion of methane to methanol as a key step for development of methane‐based biorefineries . J Microbiol Biotechnol 24 : 1597 – 1605 ( 2014 ). 

  5. Whitaker WB , Sandoval NR , Bennett RK , Fast AG and Papoutsakis ET , Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization . Curr Opin Biotechnol 33 : 165 – 175 ( 2015 ). 

  6. Conrado RJ and Gonzalez R , Envisioning the bioconversion of methane to liquid fuels . Science 343 : 621 – 623 ( 2014 ). 

  7. Park D and Lee J , Biological conversion of methane to methanol . Korean J Chem Eng 30 : 977 – 987 ( 2013 ). 

  8. Periana RA , Taube DJ , Evitt ER , Löffler DG , Wentrcek PR and Voss G et al., A mercury‐catalyzed, high‐yield system for the oxidation of methane to methanol . Science 259 : 340 – 343 ( 1993 ). 

  9. Jones CJ , Taube D , Ziatdinov VR , Periana RA , Nielsen RJ , Oxgaard J et al., Selective oxidation of methane to methanol catalyzed, with C‐H activation, by homogeneous, Cationic Gold . Angew Chem 116 : 4726 – 4729 ( 2004 ). 

  10. Benlounes O , Mansouri S , Rabia C and Hocine S , Direct oxidation of methane to oxygenates over heteropolyanions . J Nat Gas Chem 17 : 309 – 312 ( 2008 ) 

  11. Hammond C , Forde MM , Rahim A , Hasbi M , Thetford A , He Q et al., Direct catalytic conversion of methane to methanol in an aqueous medium by using copper‐promoted Fe‐ZSM‐5 . Angew Chem Int Edit 51 : 5129 – 5133 ( 2012 ). 

  12. Duan C , Luo M and Xing X , High‐rate conversion of methane to methanol by Methylosinus trichosporium OB3b . Bioresour Technol 102 : 7349 – 7353 ( 2011 ). 

  13. Han J.S, Ahn CM , Mahanty B and Kim CG , Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil . Appl Biochem Biotechnol 171 : 1487 – 1499 ( 2013 ). 

  14. Hwang IY , Hur DH , Lee JH , Park CH , Chang IS , Lee JW et al., Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst . J Microbiol Biotechnol 25 : 375 – 380 ( 2015 ). 

  15. Dunfield PF , Yuryev A , Senin P , Smirnova AV , Stott MB , Hou SLB et al., Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia . Nature 450 : 879 – 882 ( 2007 ). 

  16. Strong PJ , Xie S and Clarke WP , Methane as a resource: Can the methanotrophs add value? Environ Sci Technol 49 : 4001 – 4018 ( 2015 ). 

  17. Gilman A , Laurens LM , Puri AW , Chu F , Pienkos PT and Lidstrom ME , Bioreactor performance parameters for an industrially‐promising methanotroph Methylomicrobium buryatense 5GB1 . Microb Cell Fact 14 : 182 ( 2015 ). 

  18. Lee J , Yasin M , Park S , Chang IS , Ha KS , Lee EY et al., Gas–liquid mass transfer coefficient of methane in bubble column reactor . Korean J Chem Eng 32 : 1060 – 1063 ( 2015 ). 

  19. Kalyuzhnaya M , Puri AW and Lidstrom ME , Metabolic engineering in methanotrophic bacteria . Metab Eng 29 : 142 – 152 ( 2015 ). 

  20. Hanson RS and Hanson TE , Methanotrophic bacteria . Microbiol Rev 60 : 439 – 471 ( 1996 ). 

  21. Semrau JD , DiSpirito AA and Yoon S , Methanotrophs and copper . FEMS Microbiol Rev 34 : 496 – 531 ( 2010 ). 

  22. Kang TJ and Lee EY , Metabolic versatility of microbial methane oxidation for biocatalytic methane conversion . J Ind Eng Chem 35 : 8 – 13 ( 2016 ). 

  23. Hakemian AS and Rosenzweig AC , The biochemistry of methane oxidation . Annu Rev Biochem 76 : 223 – 241 ( 2007 ). 

  24. Culpepper MA and Rosenzweig AC , Architecture and active site of particulate methane monooxygenase . Crit Rev Biochem Mol Biol 47 : 483 – 492 ( 2012 ). 

  25. Haque MFU , Kalidass B , Bandow N , Turpin EA , DiSpirito AA and Semrau JD , Cerium regulates expression of alternative methanol dehydrogenases in Methylosinus trichosporium OB3b . Appl Environ Microbiol 81 : 7546 – 7552 ( 2015 ). 

  26. Chu F and Lidstrom ME , XoxF acts as the predominant methanol dehydrogenase in the type I methanotroph Methylomicrobium buryatense . J Bacteriol 198 : 1317 – 1325 ( 2016 ). 

  27. Torre A , Metivier A , Chu F , Laurens LM , Beck DA , Pienkos , P. T et al., Genome‐scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1) . Microb Cell Fact 14 : 188 ( 2015 ). 

  28. Vorholt JA , Cofactor‐dependent pathways of formaldehyde oxidation in methylotrophic bacteria . Arch Microbiol 178 : 239 – 249 ( 2002 ). 

  29. Chistoserdova L , Chen SW , Lapidus A and Lidstrom ME , Methylotrophy in Methylobacteria extorquens AM1 from a genomic point of view . J Bacteriol 185 : 2980 – 2987 ( 2003 ). 

  30. Matsen JB , Yang S , Stein LY , Beck D and Kalyuzhnaya MG , Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: transcriptomic study . Front Microbiol 4 : 1 – 16 ( 2013 ). 

  31. Trotsenko YA and Murrell JC , Metabolic aspects of aerobic obligate methanotrophy . Adv Appl Microbiol 63 : 183 – 229 ( 2008 ). 

  32. Kalyuzhnaya MG , Yang S , Rozova ON , Smalley NE , Clubb J , Lamb A et al., Highly efficient methane biocatalysis revealed in a methanotrophic bacterium . Nat Commun 4 : 2785 ( 2013 ). 

  33. Hou S , Makarova KS , Saw JH , Senin P , Ly BV , Zhou Z et al., Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum , a representative of the bacterial phylum Verrucomicrobia . Biol Direct 3 : 26 ( 2008 ). 

  34. Kao WC , Chen YR , Yi EC , Lee H , Tian Q , Wu KM et al ., Quantitative proteomic analysis of metabolic regulation by copper ions in M. capsulatus (Bath) . J Biol Chem 279 : 51554 – 5160 ( 2004 ). 

  35. Strong PJ , Kalyuzhnaya M , Silverman J and Clarke WP , A methanotroph‐based biorefinery: Potential scenarios for generating multiple products from a single fermentation . Bioresour Technol 215 : 314 – 323 ( 2016 ). 

  36. Chistoserdova L and M. E. Lidstrom , Genetics of the serine cycle in Methylobacterium extorquens AM1: identification of sgaA and mtdA and sequences of sgaA, hprA, and mtdA . J Bacteriol 176 : 1957 – 1968 ( 1994 ). 

  37. Chistoserdova L and M. E. Lidstrom , Genetics of the serine cycle in Methylobacterium extorquens AM1: cloning, sequence, mutation, and physiological effect of glyA, the gene for serine hydroxymethyltransferase . J Bacteriol 176 : 6759 – 6763 ( 1994 ). 

  38. Chistoserdova L and M. E. Lidstrom , Genetics of the serine cycle in Methylobacterium extorquens AM1: identification, sequence, and mutation of three new genes involved in C1 assimilation, orf4, mtkA, and mtkB . J Bacteriol 176 : 7398 – 7404 ( 1994 ). 

  39. Okubo Y , Yang S , Chistoserdova L and Lidstrom ME , Alternative route for glyoxylate consumption during growth on two‐carbon compounds by Methylobacterium extorquens AM1 . J Bacteriol 192 : 1813 – 1823 ( 2010 ). 

  40. Peyraud R , Kiefer P , Christen P , Massou S , Portais JC and Vorholt JA , Demonstration of the ethylmalonyl‐CoA pathway by using 13C metabolomics . PNAS , 106 : 4846 – 4851 ( 2009 ). 

  41. Sonntag F , Buchhaupt M and Schrader J , Thioesterases for ethylmalonyl–CoA pathway derived dicarboxylic acid production in Methylobacterium extorquens AM1 . Appl Microb Biotechnol 98 : 4533 – 4544 ( 2014 ). 

  42. Schneider K , Peyraud R , Kiefer P , Christen P , Delmotte N , Massou S et al., The ethylmalonyl‐CoA pathway is used in place of the glyoxylate cycle by Methylobacterium extorquens AM1 during growth on acetate . J Biol Chem 287 : 757 – 766 ( 2012 ). 

  43. Khadem AF , Pol A , Wieczorek A , Mohammadi SS , Francoijs KJ , Stunnenberg HG et al., Autotrophic methanotrophy in Verrucomicrobia : Methylacidiphilum fumariolicum SolV uses the Calvin‐Benson‐Bassham cycle for carbon dioxide fixation . J Bacteriol 193 : 4438 – 4446 ( 2011 ). 

  44. Marx CJ and Lidstrom ME , Development of improved versatile broad‐host‐range vectors for use in methylotrophs and other gram‐negative bacteria . Microbiology 147 : 2065 – 2075 ( 2001 ). 

  45. Marx CJ and Lidstrom ME , Broad‐host‐range cre‐lox system for antibiotic marker recycling in gram‐negative bacteria . Biotechniques 33 : 1062 – 1067 ( 2002 ). 

  46. Csáki R , Bodrossy L , Klem J , Murrell JC and Kovács KL , Genes involved in the copper‐dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): cloning, sequencing and mutational analysis . Microbiol 149 : 1785 – 1795 ( 2003 ). 

  47. Stafford GP , Scanlan J , McDonald IR, and Murrell JC, rpoN, mmoR and mmoG, genes involved in regulating the expression of soluble methane monooxygenase in Methylosinus trichosporium OB3b . Microbiol 149 : 1771 – 1784 ( 2003 ). 

  48. Ali H and Murrell JC , Development and validation of promoter‐probe vectors for the study of methane monooxygenase gene expression in Methylococcus capsulatus Bath . Microbiol 155 : 761 – 771 ( 2009 ). 

  49. Ojala DS , Beck DA and Kalyuzhnaya MG , Genetic systems for moderately halo (alkali) philic bacteria of the genus Methylomicrobium . Methods Enzymol 495 : 99 – 118 ( 2011 ). 

  50. Puri AW , Owen S , Chu F , Chavkin T , Beck DAC , Kalyuzhnaya MG et al., Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense . Appl Environ Microbiol 81 : 1775 – 1781 ( 2015 ). 

  51. Simon R , Priefer U and Pühler A , A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gramnegative bacteria . Nat Biotechnol 1 : 784 – 791 ( 1983 ). 

  52. Sharpe PL , DiCosimo D , Bosak MD , Knoke K , Tao L , Cheng Q et al ., Use of transposon promoter‐probe vectors in the metabolic engineering of the obligate methanotroph Methylomonas sp. strain 16a for enhanced C40 carotenoid synthesis . Appl Environ Microbiol 73 : 1721 – 1728 ( 2007 ). 

  53. Baani M and Liesack W , Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2 . Proc Natl Acad Sci 105 : 10203 – 10208 ( 2008 ). 

  54. Crombie A and Murrell JC , Development of a system for genetic manipulation of the facultative methanotroph Methylocella silvestris BL2 . Methods Enzymol 495 : 119 – 133 ( 2011 ). 

  55. Yan X , Chu F , Puri AW , Fu Y and Lidstrom ME , Electroporation‐based genetic manipulation in type I methanotrophs . Appl Environ Microbiol 82 : 2062 – 2069 ( 2016 ). 

  56. Ward N , Larsen Ø , Sakwa J , Bruseth L , Khouri H , Durkin AS et al., Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath) . PLoS Biol 2 :e303 ( 2004 ). 

  57. Erikstad HA and Birkeland NK , Draft genome sequence of “Candidatus Methylacidphilum kamchatkense ” strain Kam1, a thermoacidophilic Methanotrophic verrucomicrobium , Genome Announc 3 : e00065 ‐ 15 ( 2015 ). 

  58. Larsen Ø and Karlsen OA , Transcriptomic profiling of Methylococcus capsulatus (Bath) during growth with two different methane monooxygenases . MicrobiologyOpen. 5 : 254 – 267 ( 2015 ). 

  59. Yang S , Matsen JB , Konopka M , Green‐Saxena A , Clubb J , Sadilek et al., Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part II. Metabolomics and 13C‐labeling study . Front Microbiol 4 : 1 – 13 ( 2013 ). 

  60. Vorobev A , Jagadevan S , Jain S , Anantharaman K , Dick GJ , Vuilleumier S et al., Genomic and transcriptomic analyses of the facultative methanotroph Methylocystis sp. strain SB2 grown on methane or ethanol . Appl Environ Microbiol 80 : 3044 – 3052 ( 2014 ). 

  61. Ye RW and Kelly K , Construction of carotenoid biosynthetic pathways through chromosomal integration in methane‐utilizing bacterium Methylomonas sp. Strain 16a . Methods Mol Biol 892 : 185 – 195 ( 2012 ). 

  62. Tao L , Sedkova N , Yao H , Ye RW , Sharpe PL and Cheng Q , Expression of bacterial hemoglobin genes to improve astaxanthin production in a methanotrophic bacterium Methylomonas sp . Appl Microbiol Biotechnol 74 : 625 – 633 ( 2007 ). 

  63. Jang YS , Kim B , Shin JH , Choi YJ , Choi S , Song CW et al., Bio‐based production of C2–C6 platform chemicals . Biotechnol Bioeng 109 : 2437 – 2459 ( 2012 ). 

  64. Global and China Lactic Acid and Derivative Industry Report, 2014–2016 . [Online]. RNR Market Research ( 2014 ). Available at: http://www.rnrmarketresearch.com/global‐and‐china‐lactic‐acid‐and‐derivative‐industry‐report‐2014‐2016‐market‐report.html [July 27, 2016]. 

  65. Saville RM , Lee S , Regitsky DD , Resnick SM and Silverman J , Compositions and methods for biological production of lactate from C1 compounds using lactate dehydrogenase transformants. US patent 2014/205146 A1 ( 2014 ). 

  66. Guarnieri MT , Biogas to liquid fuels and chemicals using a methanotrophic microorganism WBS 2.3.2.102. [Online] Project peer review ( 2015 ). Available at: http://www.energy.gov/sites/prod/files/2015/04/f21/biochemical_conversion_guarnieri_0130.pdf [July 27, 2016] 

  67. Henard CA , Smith H , Dowe N , Kalyuzhnaya MG , Pienkos PT and Guarnieri MT , Bioconversion of methane to lactate by an obligate methanotrophic bacterium , Sci Rep 6 : 21585 ( 2016 ). 

  68. Holladay JE , Bozell JJ , White JF and Johnson D , Top value‐added chemicals from biomass. [Online] DOE Report PNNL, 16983 ( 2007 ) Available at: http://www.nrel.gov/docs/fy04osti/35523.pdf [July 27, 2016]. 

  69. Thakker C , Martinez I , San KY and Bennett GN , Succinate production in Escherichia coli . Biotechnol J 7 : 213 – 224 ( 2012 ). 

  70. Beauprez JJ , De Mey M and Soetaert WK , Microbial succinic acid production: natural versus metabolic engineered producers . Process Biochem 45 : 1103 – 1114 ( 2010 ). 

  71. Cheng KK , Wang GY , Zeng J and Zhang JA , Improved succinate production by metabolic engineering . Biomed Res Int 2013 : 12 ( 2013 ). 

  72. E4tech (UK) Ltd, From the Sugar Platform to biofuels and biochemicals . [Online]. E4tech (UK) ( 2015 ). Available at: https://ec.europa.eu/energy/sites/ener/files/documents/EC%20Sugar%20Platform%20final%20report.pdf [July 27, 2016]. 

  73. Nattrass L , Aylott M and Higson A , NNFCC Renewable chemicals factsheet: Succinic acid . [Online]. ( 2013 ). Available at: http://www.nnfcc.co.uk/publications/nnfcc‐renewable‐chemicals‐factsheet‐succinic‐acid [July 27, 2016]. 

  74. Erb TJ , Berg IA , Brecht V , Müller M , Fuchs G and Alber BE , Synthesis of C5‐dicarboxylic acids from C2‐units involving crotonyl‐CoA carboxylase/reductase: the ethylmalonyl‐CoA pathway . Proc Natl Acad Sci 104 : 10631 – 10636 ( 2007 ). 

  75. Han L and Reynolds KA , A novel alternate anaplerotic pathway to the glyoxylate cycle in streptomycetes . J Bacteriol 179 : 5157 – 5164 ( 1997 ). 

  76. Subbian E , Production of succinic acid from organic waste or biogas or methane using recombinant methanotrophic bacterium. Patent No. WO/2015/155791 A2 ( 2015 ). 

  77. Hunter SE , Ehrenberger CE and Savage PE , Kinetics and mechanism of tetrahydrofuran synthesis via 1,4‐butanediol dehydration in high‐temperature water . J Org Chem 71 : 6229 – 6239 ( 2006 ). 

  78. Hwang DW , Kashinathan P , Lee JM , Lee JH , Lee UH , Hwang JS et al., Production of γ‐butyrolactone from biomass‐derived 1,4‐butanediol over novel copper‐silica nanocomposite . Green Chem 13 : 1672 – 1675 ( 2011 ). 

  79. Grand View Research , 1,4‐Butanediol (BDO) market analysis by application (tetrahydrofuran, polybutylene teraphthalate, gamma‐butyrolactone & polyurethanes), and segment forecasts to 2020. [Online]. Grand View Research ( 2015 ). Available at: http://www.grandviewresearch.com/industry‐analysis/1‐4‐butanediol‐market [July 27, 2016]. 

  80. Burk MB , Burgard AP , Osterhout RE and Sun J , Microorganisms for the production of 1,4‐butanediol. US patent 2010/030711 A3 ( 2010 ). 

  81. Yim H , Haselbeck R , Niu W , Pujol‐Baxley C , Burgard A , Boldt J et al., Metabolic engineering of Escherichia coli for direct production of 1,4‐butanediol . Nat Chem Biol 7 : 445 – 452 ( 2011 ). 

  82. Zeng AP and Sabra W , Microbial production of diols as platform chemicals: recent progresses . Curr Opin Biotechnol 22 : 749 – 757 ( 2011 ). 

  83. Furutani M , Uenishi A and Iwasa K , Recombinant cell, and method for producing 1,4‐butanediol. Patent EP2014/0741160 ( 2014 ). 

  84. Global News Wire , Global Isobutanol Market Poised to Surge from USD 775.0 Million in 2014 to USD 1,085.00 Million by 2020 . [Online]. Available at: https://globenewswire.com/news‐release/2016/03/22/822060/0/en/Global‐Isobutanol‐Market‐Poised‐to‐Surge‐from‐USD‐775‐0‐Million‐in‐2014‐to‐USD‐1‐085‐00‐Million‐by‐2020‐MarketResearchStore‐Com.html [July 27, 2016 ]. 

  85. Atsumi S , Wu TY , Eckl EM , Hawkins SD , Buelter T and Liao JC , Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes . Appl Microbiol Biotechnol 85 : 651 – 657 ( 2010 ). 

  86. Trinh CT , Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n‐butanol and isobutanol production . Appl Microbiol Biotechnol 95 : 1083 – 1094 ( 2012 ). 

  87. Lee J , Jang YS , Choi SJ , Im JA , Song H , Cho JH et al., Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol‐butanol‐ethanol fermentation . Appl Environ Microbiol 78 : 1416 – 1423 ( 2012 ). 

  88. Avalos JL , Fink GR and Stephanopoulos G , Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched‐chain alcohols . Nat Biotechnol 31 : 335 – 341 ( 2013 ). 

  89. Branduardi P , Longo V , Berterame NM , Rossi G and Porro D , A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae . Biotechnol Biofuels 6 : 68 ( 2013 ). 

  90. Coleman WJ , Vidanes GM , Cottarel G , Muley S , Kamimura R , Javan AF et al., Biological conversion of multi‐carbon compounds from methane. US patent 2014/0273128 A1 ( 2014 ). 

  91. Lane J , Methane‐munching platform microbe: The Digest's 2015 8‐Slide Guide to Intrexon Energy. [Online]. Biofuels Digest ( 2015 ). Available at: http://www.biofuelsdigest.com/bdigest/2015/11/09/methane‐munching‐platform‐microbe‐the‐digests‐2015‐8‐slide‐guide‐to‐intrexon‐energy/ [July 27, 2016]. 

  92. Gordillo A , Pachón LD , de Jesus E and Rothenberg G , Palladium‐catalysed telomerisation of isoprene with glycerol and polyethylene glycol: a facile route to new terpene derivatives . Adv Synth Catal 351 : 325 – 330 ( 2009 ). 

  93. Moraisa ARC , Dworakowska , Reisa A , Gouveiaa L , Matosa CT , Bogdałb D et al ., Chemical and biological‐based isoprene production: green metrics . Catal Today 239 : 38 – 43 ( 2015 ). 

  94. ETC , Rubber and synthetic biology – a case study . [Online]. Available at: http://www.etcgroup.org/files/ETC‐rubber‐synbio‐casestudy2014.pdf [July 27, 2016]. 

  95. Kuzuyama T , Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units . Biosci Biotechnol Biochem 66 : 1619 – 1627 ( 2002 ). 

  96. Donaldson GK , Hollands K and Picataggio SK , Biocatalyst for conversion of methane and methanol to isoprene. US patent 2015/0225743 A1 ( 2015 ). 

  97. Leonard E , Minshull J , Ness J and Purcell TJ , Composition and methods for biological production of isoprene. US patent 2016/0017374 A1 ( 2016 ). 

  98. Martin VJ , Pitera DJ , Withers ST , Newman JD and Keasling JD , Engineering a mevalonate pathway in Escherichia coli for production of terpenoids . Nat Biotechnol 21 : 796 – 802 ( 2003 ). 

  99. Intrexons, Intrexon's industrial products division achieves bioconversion of methane to farnesene . [Online]. Intrexon Press Release ( 2014 ). Available at: http://investors.dna.com/2014‐06‐30‐Intrexons‐Industrial‐Products‐Division‐Achieves‐Bioconversion‐of‐Methane‐to‐Farnesene [July 27, 2016]. 

  100. Global Market Insights, Farnesene market size potential likely to exceed USD 480 million by 2023 . [Online]. Press release ( 2016 ). Available at: https://www.gminsights.com/pressrelease/farnesene‐market [July 27, 2016]. 

  101. Zhu Y , Eiteman MA , DeWitt K and Altman E , Homolactate fermentation by metabolically engineered Escherichia coli strains . Appl Environ Microbiol 73 : 456 – 464 ( 2007 ). 

  102. Jantama K , Haupt MJ , Svoronos SA , Zhang X , Moore JC , Shanmugam KT et al ., Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate . Biotechnol Bioeng 99 : 1140 – 1153 ( 2008 ). 

  103. Yim H , Haselbeck R , Niu W , Pujol‐Baxley C , Burgard A et al., Metabolic engineering of Escherichia coli for direct production of 1,4‐butanediol . Nat Chem Biol 7 : 445 – 452 ( 2011 ). 

  104. Lan EI , and Liao JC , Microbial synthesis of n‐butanol, isobutanol, and other higher alcohols from diverse resources . Bioresour Technol 135 : 339 – 349 ( 2013 ). 

  105. Whited GM , Feher FJ , Benko DA , Cervin MA , Chotani GK et al., Technology update: Development of a gas‐phase bioprocess for isoprene‐monomer production using metabolic pathway engineering . Ind Biotechnol 6 : 152 – 163 ( 2010 ). 

  106. Müller JE , Meyer F , Litsanov B , Kiefer P , Potthoff E , Heux S et al., Engineering Escherichia coli for methanol conversion . Metab Eng 28 : 190 – 201 ( 2015 ). 

  107. Scheller S , Goenrich M , Boecher R , Thauer RK and Jaun B , The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane . Nature 465 : 606 – 609 ( 2010 ). 

  108. Shima S , Krueger M , Weinert T , Demmer U , Kahnt J , Thauer RK et al., Structure of a methyl‐coenzyme M reductase from Black Sea mats that oxidize methane anaerobically . Nature 481 : 98 – 101 ( 2012 ). 

  109. Costa KC and Leigh JA , Metabolic versatility in methanogens . Curr Opin Biotechnol 29 : 70 – 75 ( 2014 ). 

  110. Soo VW , McAnulty MJ , Tripathi A , Zhu F , Zhang L , Hatzakis E , Smith PB et al., Reversing methanogenesis to capture methane for liquid biofuel precursors . Microb Cell Fact 15 : 11 ( 2016 ). 

  111. Yu Y , Ramsay JA and Ramsay BA , On‐line estimation of dissolved methane concentration during methanotrophic fermentations . Biotechnol Bioeng 95 : 788 – 793 ( 2006 ). 

  112. Lee J , Kim K , Chang IS , Kim MG , Ha KS , Lee EY et al ., Enhanced mass transfer rate of methane in agueous phase via methyl‐functionalized SBA‐15 . J Mol Liq 215 : 154 – 160 ( 2016 ). 

LOADING...

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로