$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] CRISPR-Cas: biology, mechanisms and relevance 원문보기

Philosophical transactions. Biological sciences, v.371 no.1707, 2016년, pp.20150496 -   

Hille, Frank (Max Planck Institute for Infection Biology) ,  Charpentier, Emmanuelle (Max Planck Institute for Infection Biology)

Abstract AI-Helper 아이콘AI-Helper

Prokaryotes have evolved several defence mechanisms to protect themselves from viral predators. Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) display a prokaryotic adaptive immune system that memorizes previous infections by integrating short ...

Keyword

참고문헌 (157)

  1. 1 Barrangou R , Fremaux C , Deveau H , Richards M , Boyaval P , Moineau S , Romero DA , Horvath P 2007 CRISPR provides acquired resistance against viruses in prokaryotes . Science 315 , 1709 – 1712 . ( 10.1126/science.1138140 ) 17379808 

  2. 2 Haft DH , Selengut J , Mongodin EF , Nelson KE 2005 A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes . PLoS Comput. Biol . 1 , e60 ( 10.1371/journal.pcbi.0010060 ) 16292354 

  3. 3 Makarova KS , Grishin NV , Shabalina SA , Wolf YI , Koonin EV 2006 A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action . Biol. Direct . 1 , 7 ( 10.1186/1745-6150-1-7 ) 16545108 

  4. 4 Mojica FJ , Diez-Villasenor C , Garcia-Martinez J , Soria E 2005 Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements . J. Mol. Evol . 60 , 174 – 182 . ( 10.1007/s00239-004-0046-3 ) 15791728 

  5. 5 Makarova KS et al. 2015 An updated evolutionary classification of CRISPR–Cas systems . Nat. Rev. Microbiol . 13 , 722 – 736 . ( 10.1038/nrmicro3569 ) 26411297 

  6. 6 Makarova KS et al. 2011 Evolution and classification of the CRISPR-Cas systems . Nat. Rev. Microbiol . 9 , 467 – 477 . ( 10.1038/nrmicro2577 ) 21552286 

  7. 7 Shmakov S et al. 2015 Discovery and functional characterization of diverse class 2 CRISPR-Cas systems . Mol. Cell . 60 , 385 – 397 . ( 10.1016/j.molcel.2015.10.008 ) 26593719 

  8. 8 Fineran PC , Charpentier E 2012 Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information . Virology 434 , 202 – 209 . ( 10.1016/j.virol.2012.10.003 ) 23123013 

  9. 9 Rath D , Amlinger L , Rath A , Lundgren M 2015 The CRISPR-Cas immune system: biology, mechanisms and applications . Biochimie 117 , 119 – 128 . ( 10.1016/j.biochi.2015.03.025 ) 25868999 

  10. 10 Nunez JK , Kranzusch PJ , Noeske J , Wright AV , Davies CW , Doudna JA 2014 Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity . Nat. Struct. Mol. Biol . 21 , 528 – 534 . ( 10.1038/nsmb.2820 ) 24793649 

  11. 11 Nuñez JK , Lee ASY , Engelman A , Doudna JA 2015 Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity . Nature 519 , 193 – 198 . ( 10.1038/nature14237 ) 25707795 

  12. 12 Rollie C , Schneider S , Brinkmann AS , Bolt EL , White MF 2015 Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition . eLife 4 , e08716 ( 10.7554/eLife.08716 ) 

  13. 13 Arslan Z , Hermanns V , Wurm R , Wagner R , Pul U 2014 Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system . Nucleic Acids Res . 42 , 7884 – 7893 . ( 10.1093/nar/gku510 ) 24920831 

  14. 14 Babu M et al. 2011 A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair . Mol. Microbiol . 79 , 484 – 502 . ( 10.1111/j.1365-2958.2010.07465.x ) 21219465 

  15. 15 Wiedenheft B , Zhou K , Jinek M , Coyle SM , Ma W , Doudna JA 2009 Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense . Structure 17 , 904 – 912 . ( 10.1016/j.str.2009.03.019 ) 19523907 

  16. 16 Beloglazova N et al. 2008 A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats . J. Biol. Chem . 283 , 20 361 – 20 371 . ( 10.1074/jbc.M803225200 ) 

  17. 17 Yosef I , Goren MG , Qimron U 2012 Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli . Nucleic Acids Res . 40 , 5569 – 5576 . ( 10.1093/nar/gks216 ) 22402487 

  18. 18 Wei Y , Chesne MT , Terns RM , Terns MP 2015 Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus . Nucleic Acids Res . 43 , 1749 – 1758 . ( 10.1093/nar/gku1407 ) 25589547 

  19. 19 Li M , Wang R , Zhao D , Xiang H 2014 Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process . Nucleic Acids Res . 42 , 2483 – 2492 . ( 10.1093/nar/gkt1154 ) 24265226 

  20. 20 Vorontsova D et al. 2015 Foreign DNA acquisition by the I-F CRISPR–Cas system requires all components of the interference machinery . Nucleic Acids Res . 43 , 10 848 – 10 860 . ( 10.1093/nar/gkv1261 ) 

  21. 21 Heler R , Samai P , Modell JW , Weiner C , Goldberg GW , Bikard D , Marraffini LA 2015 Cas9 specifies functional viral targets during CRISPR-Cas adaptation . Nature 519 , 199 – 202 . ( 10.1038/nature14245 ) 25707807 

  22. 22 Wei Y , Terns RM , Terns MP 2015 Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation . Genes Dev . 29 , 356 – 361 . ( 10.1101/gad.257550.114 ) 25691466 

  23. 23 Silas S , Mohr G , Sidote DJ , Markham LM , Sanchez-Amat A , Bhaya D , Lambowitz AM , Fire AZ 2016 Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein . Science 351 , paad4234. ( 10.1126/science.aad4234 ) 

  24. 24 Swarts DC , Mosterd C , van Passel MW , Brouns SJ 2012 CRISPR interference directs strand specific spacer acquisition . PLoS ONE 7 , e35888 ( 10.1371/journal.pone.0035888 ) 22558257 

  25. 25 Datsenko KA , Pougach K , Tikhonov A , Wanner BL , Severinov K , Semenova E 2012 Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system . Nat. Commun . 3 , 945 ( 10.1038/ncomms1937 ) 22781758 

  26. 26 Deveau H , Barrangou R , Garneau JE , Labonte J , Fremaux C , Boyaval P , Romero DA , Horvath P , Moineau S 2008 Phage response to CRISPR-encoded resistance in Streptococcus thermophilus . J. Bacteriol . 190 , 1390 – 1400 . ( 10.1128/JB.01412-07 ) 18065545 

  27. 27 Mojica FJ , Diez-Villasenor C , Garcia-Martinez J , Almendros C 2009 Short motif sequences determine the targets of the prokaryotic CRISPR defence system . Microbiology 155 , 733 – 740 . ( 10.1099/mic.0.023960-0 ) 19246744 

  28. 28 Fonfara I , Richter H , Bratovič M , Le Rhun A , Charpentier E 2016 The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA . Nature 532 , 517 – 521 . ( 10.1038/nature17945 ) 27096362 

  29. 29 Zetsche B et al. 2015 Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system . Cell 163 , 759 – 771 . ( 10.1016/j.cell.2015.09.038 ) 26422227 

  30. 30 Richter C , Dy RL , McKenzie RE , Watson BNJ , Taylor C , Chang JT , McNeil MB , Staals RHJ , Fineran PC 2014 Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer . Nucleic Acids Res . 42 , 8516 – 8526 . ( 10.1093/nar/gku527 ) 24990370 

  31. 31 Fineran PC , Gerritzen MJH , Suarez-Diez M , Kunne T , Boekhorst J , van Hijum SAFT , Staals RHJ , Brouns SJJ 2014 Degenerate target sites mediate rapid primed CRISPR adaptation . Proc. Natl Acad. Sci. USA 111 , E1629 – E1638 . ( 10.1073/pnas.1400071111 ) 24711427 

  32. 32 Redding S , Sternberg SH , Marshall M , Gibb B , Bhat P , Guegler CK , Wiedenheft B , Doudna JA , Greene EC 2015 Surveillance and processing of foreign DNA by the Escherichia coli CRISPR-Cas system . Cell 163 , 854 – 865 . ( 10.1016/j.cell.2015.10.003 ) 26522594 

  33. 33 Carte J , Wang R , Li H , Terns RM , Terns MP 2008 Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes . Genes Dev . 22 , 3489 – 3496 . ( 10.1101/gad.1742908 ) 19141480 

  34. 34 Haurwitz RE , Jinek M , Wiedenheft B , Zhou K , Doudna JA 2010 Sequence- and structure-specific RNA processing by a CRISPR endonuclease . Science 329 , 1355 – 1358 . ( 10.1126/science.1192272 ) 20829488 

  35. 35 Garside EL , Schellenberg MJ , Gesner EM , Bonanno JB , Sauder JM , Burley SK , Almo SC , Mehta G , MacMillan AM 2012 Cas5d processes pre-crRNA and is a member of a larger family of CRISPR RNA endonucleases . RNA 18 , 2020 – 2028 . ( 10.1261/rna.033100.112 ) 23006625 

  36. 36 Nam KH , Haitjema C , Liu X , Ding F , Wang H , DeLisa MP , Ke A 2012 Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system . Structure 20 , 1574 – 1584 . ( 10.1016/j.str.2012.06.016 ) 22841292 

  37. 37 Richter H , Zoephel J , Schermuly J , Maticzka D , Backofen R , Randau L 2012 Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis . Nucleic Acids Res . 40 , 9887 – 9896 . ( 10.1093/nar/gks737 ) 22879377 

  38. 38 Sashital DG , Jinek M , Doudna JA 2011 An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3 . Nat. Struct. Mol. Biol . 18 , 680 – 687 . ( 10.1038/nsmb.2043 ) 21572442 

  39. 39 Hale CR , Zhao P , Olson S , Duff MO , Graveley BR , Wells L , Terns RM , Terns MP 2009 RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex . Cell 139 , 945 – 956 . ( 10.1016/j.cell.2009.07.040 ) 19945378 

  40. 40 Hatoum-Aslan A , Maniv I , Marraffini LA 2011 Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site . Proc. Natl Acad. Sci. USA 108 , 21 218 – 21 222 . ( 10.1073/pnas.1112832108 ) 

  41. 41 Charpentier E , Richter H , van der Oost J , White MF 2015 Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity . FEMS Microbiol. Rev . 39 , 428 – 441 . ( 10.1093/femsre/fuv023 ) 25994611 

  42. 42 Deltcheva E , Chylinski K , Sharma CM , Gonzales K , Chao Y , Pirzada ZA , Eckert MR , Vogel J , Charpentier E 2011 CRISPR RNA maturation by trans -encoded small RNA and host factor RNase III . Nature 471 , 602 – 607 . ( 10.1038/nature09886 ) 21455174 

  43. 43 Zhang Y , Heidrich N , Ampattu BJ , Gunderson CW , Seifert HS , Schoen C , Vogel J , Sontheimer EJ 2013 Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis . Mol. Cell 50 , 488 – 503 . ( 10.1016/j.molcel.2013.05.001 ) 23706818 

  44. 44 Bhaya D , Davison M , Barrangou R 2011 CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation . Annu. Rev. Genet . 45 , 273 – 297 . ( 10.1146/annurev-genet-110410-132430 ) 22060043 

  45. 45 Jinek M , Chylinski K , Fonfara I , Hauer M , Doudna JA , Charpentier E 2012 A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity . Science 337 , 816 – 821 . ( 10.1126/science.1225829 ) 22745249 

  46. 46 Marraffini LA , Sontheimer EJ 2010 CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea . Nat. Rev. Genet . 11 , 181 – 190 . ( 10.1038/nrg2749 ) 20125085 

  47. 47 Wang R , Preamplume G , Terns MP , Terns RM , Li H 2011 Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage . Structure 19 , 257 – 264 . ( 10.1016/j.str.2010.11.014 ) 21300293 

  48. 48 Westra ER , Nilges B , van Erp PB , van der Oost J , Dame RT , Brouns SJ 2012 Cascade-mediated binding and bending of negatively supercoiled DNA . RNA Biol . 9 , 1134 – 1138 . ( 10.4161/rna.21410 ) 22954644 

  49. 49 Zhang J et al. 2012 Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity . Mol. Cell . 45 , 303 – 313 . ( 10.1016/j.molcel.2011.12.013 ) 22227115 

  50. 50 Jiang W , Bikard D , Cox D , Zhang F , Marraffini LA 2013 RNA-guided editing of bacterial genomes using CRISPR-Cas systems . Nat. Biotechnol . 31 , 233 – 239 . ( 10.1038/nbt.2508 ) 23360965 

  51. 51 Semenova E , Jore MM , Datsenko KA , Semenova A , Westra ER , Wanner B , van der Oost J , Brouns SJJ , Severinov K 2011 Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence . Proc. Natl Acad. Sci. USA 108 , 10 098 – 10 103 . ( 10.1073/pnas.1104144108 ) 

  52. 52 Westra ER , Semenova E , Datsenko KA , Jackson RN , Wiedenheft B , Severinov K , Brouns SJ 2013 Type I-E CRISPR-Cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition . PLoS Genet . 9 , e1003742 ( 10.1371/journal.pgen.1003742 ) 24039596 

  53. 53 Marraffini LA , Sontheimer EJ 2010 Self versus non-self discrimination during CRISPR RNA-directed immunity . Nature 463 , 568 – 571 . ( 10.1038/nature08703 ) 20072129 

  54. 54 Brouns SJ et al. 2008 Small CRISPR RNAs guide antiviral defense in prokaryotes . Science 321 , 960 – 964 . ( 10.1126/science.1159689 ) 18703739 

  55. 55 Westra ER et al. 2012 CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3 . Mol. Cell . 46 , 595 – 605 . ( 10.1016/j.molcel.2012.03.018 ) 22521689 

  56. 56 Marraffini LA , Sontheimer EJ 2008 CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA . Science 322 , 1843 – 1845 . ( 10.1126/science.1165771 ) 19095942 

  57. 57 Deng L , Garrett RA , Shah SA , Peng X , She Q 2013 A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus . Mol. Microbiol . 87 , 1088 – 1099 . ( 10.1111/mmi.12152 ) 23320564 

  58. 58 Goldberg GW , Jiang W , Bikard D , Marraffini LA 2014 Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting . Nature 514 , 633 – 637 . ( 10.1038/nature13637 ) 25174707 

  59. 59 Samai P , Pyenson N , Jiang W , Goldberg GW , Hatoum-Aslan A , Marraffini LA 2015 Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity . Cell 161 , 1164 – 1174 . ( 10.1016/j.cell.2015.04.027 ) 25959775 

  60. 60 Staals RHJ et al. 2014 RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus . Mol. Cell 56 , 518 – 530 . ( 10.1016/j.molcel.2014.10.005 ) 25457165 

  61. 61 Tamulaitis G , Kazlauskiene M , Manakova E , Venclovas Č , Nwokeoji AO , Dickman MJ , Horvath P , Siksnys V 2014 Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus . Mol. Cell . 56 , 506 – 517 . ( 10.1016/j.molcel.2014.09.027 ) 25458845 

  62. 62 Zebec Z , Manica A , Zhang J , White MF , Schleper C 2014 CRISPR-mediated targeted mRNA degradation in the archaeon Sulfolobus solfataricus . Nucleic Acids Res . 42 , 5280 – 5288 . ( 10.1093/nar/gku161 ) 24603867 

  63. 63 Garneau JE et al. 2010 The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA . Nature 468 , 67 – 71 . ( 10.1038/nature09523 ) 21048762 

  64. 64 Nordström K , Forsgren A 1974 Effect of protein A on adsorption of bacteriophages to Staphylococcus aureus . J. Virol . 14 , 198 – 202 . 4277011 

  65. 65 Liu M et al. 2002 Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage . Science 295 , 2091 – 2094 . ( 10.1126/science.1067467 ) 11896279 

  66. 66 Zaleski P , Wojciechowski M , Piekarowicz A 2005 The role of Dam methylation in phase variation of Haemophilus influenzae genes involved in defence against phage infection . Microbiology 151 , 3361 – 3369 . ( 10.1099/mic.0.28184-0 ) 16207918 

  67. 67 Lu M-J , Henning U 1994 Superinfection exclusion by T-even-type coliphages . Trends Microbiol . 2 , 137 – 139 . ( 10.1016/0966-842X(94)90601-7 ) 8012757 

  68. 68 Sun X , Göhler A , Heller KJ , Neve H 2006 The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis . Virology 350 , 146 – 157 . ( 10.1016/j.virol.2006.03.001 ) 16643978 

  69. 69 Pingoud A , Fuxreiter M , Pingoud V , Wende W 2005 Type II restriction endonucleases: structure and mechanism . Cell Mol. Life Sci . 62 , 685 – 707 . ( 10.1007/s00018-004-4513-1 ) 15770420 

  70. 70 Bickle TA , Krüger DH 1993 Biology of DNA restriction . Microbiol. Rev . 57 , 434 – 450 . 8336674 

  71. 71 Parma DH , Snyder M , Sobolevski S , Nawroz M , Brody E , Gold L 1992 The Rex system of bacteriophage lambda: tolerance and altruistic cell death . Genes Dev . 6 , 497 – 510 . ( 10.1101/gad.6.3.497 ) 1372278 

  72. 72 Bingham R , Ekunwe SI , Falk S , Snyder L , Kleanthous C 2000 The major head protein of bacteriophage T4 binds specifically to elongation factor Tu . J. Biol. Chem . 275 , 23 219 – 23 226 . ( 10.1074/jbc.M002546200 ) 

  73. 73 Aizenman E , Engelberg-Kulka H , Glaser G 1996 An Escherichia coli chromosomal ‘addiction module’ regulated by guanosine [corrected] 3′,5′-bispyrophosphate: a model for programmed bacterial cell death . Proc. Natl Acad. Sci. USA 93 , 6059 – 6063 . ( 10.1073/pnas.93.12.6059 ) 8650219 

  74. 74 Fineran PC , Blower TR , Foulds IJ , Humphreys DP , Lilley KS , Salmond GPC 2009 The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair . Proc. Natl Acad. Sci. USA 106 , 894 – 899 . ( 10.1073/pnas.0808832106 ) 19124776 

  75. 75 Goldfarb T , Sberro H , Weinstock E , Cohen O , Doron S , Charpak-Amikam Y , Afik S , Ofir G , Sorek R 2015 BREX is a novel phage resistance system widespread in microbial genomes . EMBO J . 34 , 169 – 183 . ( 10.15252/embj.201489455 ) 25452498 

  76. 76 Swarts DC et al. 2014 DNA-guided DNA interference by a prokaryotic Argonaute . Nature 507 , 258 – 261 . ( 10.1038/nature12971 ) 24531762 

  77. 77 Kaya E , Doxzen KW , Knoll KR , Wilson RC , Strutt SC , Kranzusch PJ , Doudna JA 2016 A bacterial Argonaute with noncanonical guide RNA specificity . Proc. Natl Acad. Sci. USA 113 , 4057 – 4062 . ( 10.1073/pnas.1524385113 ) 27035975 

  78. 78 Olovnikov I , Chan K , Sachidanandam R , Newman DK , Aravin AA 2013 Bacterial Argonaute samples the transcriptome to identify foreign DNA . Mol. Cell 51 , 594 – 605 . ( 10.1016/j.molcel.2013.08.014 ) 24034694 

  79. 79 van Houte S et al. 2016 The diversity-generating benefits of a prokaryotic adaptive immune system . Nature 532 , 385 – 388 . ( 10.1038/nature17436 ) 27074511 

  80. 80 Bondy-Denomy J , Pawluk A , Maxwell KL , Davidson AR 2013 Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system . Nature 493 , 429 – 432 . ( 10.1038/nature11723 ) 23242138 

  81. 81 Pawluk A , Bondy-Denomy J , Cheung VHW , Maxwell KL , Davidson AR 2014 A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa . mBio 5 , e00896-14. ( 10.1128/mBio.00896-14 ) 

  82. 82 Bondy-Denomy J , Garcia B , Strum S , Du M , Rollins MF , Hidalgo-Reyes Y , Wiedenheft B , Maxwell KL , Davidson AR 2015 Multiple mechanisms for CRISPR–Cas inhibition by anti-CRISPR proteins . Nature 526 , 136 – 139 . ( 10.1038/nature15254 ) 26416740 

  83. 83 Seed KD , Lazinski DW , Calderwood SB , Camilli A 2013 A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity . Nature 494 , 489 – 491 . ( 10.1038/nature11927 ) 23446421 

  84. 84 Smith GR 2012 How RecBCD enzyme and Chi promote DNA break repair and recombination: a molecular biologist's view . Microbiol. Mol. Biol. Rev . 76 , 217 – 228 . ( 10.1128/MMBR.05026-11 ) 22688812 

  85. 85 Levy A , Goren MG , Yosef I , Auster O , Manor M , Amitai G , Edgar R , Qimron U , Sorek R 2015 CRISPR adaptation biases explain preference for acquisition of foreign DNA . Nature 520 , 505 – 510 . ( 10.1038/nature14302 ) 25874675 

  86. 86 Ivančić-Baće I , Cass SD , Wearne SJ , Bolt EL 2015 Different genome stability proteins underpin primed and naïve adaptation in E. coli CRISPR-Cas immunity . Nucleic Acids Res . 43 , 10 821 – 10 830 . ( 10.1093/nar/gkv1213 ) 

  87. 87 Sampson TR , Saroj SD , Llewellyn AC , Tzeng Y-L , Weiss DS 2013 A CRISPR/Cas system mediates bacterial innate immune evasion and virulence . Nature 497 , 254 – 257 . ( 10.1038/nature12048 ) 23584588 

  88. 88 Louwen R et al. 2013 A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain–Barré syndrome . Eur. J. Clin. Microbiol. Infect. Dis . 32 , 207 – 226 . ( 10.1007/s10096-012-1733-4 ) 22945471 

  89. 89 Gunderson FF , Cianciotto NP 2013 The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae . mBio 4 , e00074-13. ( 10.1128/mBio.00074-13 ) 

  90. 90 Mandin P , Repoila F , Vergassola M , Geissmann T , Cossart P 2007 Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets . Nucleic Acids Res . 35 , 962 – 974 . ( 10.1093/nar/gkl1096 ) 17259222 

  91. 91 Kroos L , Kaiser D 1987 Expression of many developmentally regulated genes in Myxococcus depends on a sequence of cell interactions . Genes Amp. Dev . 1 , 840 – 854 . ( 10.1101/gad.1.8.840 ) 

  92. 92 Thöny-Meyer L , Kaiser D 1993 devRS, an autoregulated and essential genetic locus for fruiting body development in Myxococcus xanthus . J. Bacteriol . 175 , 7450 – 7462 . 7693658 

  93. 93 Viswanathan P , Murphy K , Julien B , Garza AG , Kroos L 2007 Regulation of dev , an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats . J. Bacteriol . 189 , 3738 – 3750 . ( 10.1128/JB.00187-07 ) 17369305 

  94. 94 Wallace RA , Black WP , Yang X , Yang Z 2014 A CRISPR with roles in Myxococcus xanthus development and exopolysaccharide production . J. Bacteriol . 196 , 4036 – 4043 . ( 10.1128/JB.02035-14 ) 25201946 

  95. 95 Vercoe RB et al. 2013 Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands . PLoS Genet . 9 , e1003454 ( 10.1371/journal.pgen.1003454 ) 23637624 

  96. 96 De Boy RT , Mongodin EF , Emerson JB , Nelson KE 2006 Chromosome evolution in the Thermotogales : large-scale inversions and strain diversification of CRISPR sequences . J. Bacteriol . 188 , 2364 – 2374 . ( 10.1128/JB.188.7.2364-2374.2006 ) 16547022 

  97. 97 Stern A , Keren L , Wurtzel O , Amitai G , Sorek R 2010 Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet . 26 , 335 – 340 . ( 10.1016/j.tig.2010.05.008 ) 20598393 

  98. 98 Groenen PM , Bunschoten AE , van Soolingen D , van Embden JD 1993 Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis ; application for strain differentiation by a novel typing method . Mol. Microbiol . 10 , 1057 – 1065 . ( 10.1111/j.1365-2958.1993.tb00976.x ) 7934856 

  99. 99 Kamerbeek J et al. 1997 Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology . J. Clin. Microbiol . 35 , 907 – 914 . 9157152 

  100. 100 Pourcel C , Salvignol G , Vergnaud G 2005 CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies . Microbiology 151 , 653 – 663 . ( 10.1099/mic.0.27437-0 ) 15758212 

  101. 101 Cui Y et al. 2008 Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats . PLoS ONE 3 , e2652 ( 10.1371/journal.pone.0002652 ) 18612419 

  102. 102 Liu F , Kariyawasam S , Jayarao BM , Barrangou R , Gerner-Smidt P , Ribot EM , Knabel SJ , Dudley EG 2011 Subtyping Salmonella enterica serovar Enteritidis isolates from different sources by using sequence typing based on virulence genes and clustered regularly interspaced short palindromic repeats (CRISPRs) . Appl. Environ. Microbiol . 77 , 4520 – 4526 . ( 10.1128/AEM.00468-11 ) 21571881 

  103. 103 Liu F , Barrangou R , Gerner-Smidt P , Ribot EM , Knabel SJ , Dudley EG 2011 Novel virulence gene and clustered regularly interspaced short palindromic repeat (CRISPR) multilocus sequence typing scheme for subtyping of the major serovars of Salmonella enterica subsp. enterica . Appl. Environ. Microbiol . 77 , 1946 – 1956 . ( 10.1128/AEM.02625-10 ) 21278266 

  104. 104 Mokrousov I , Vyazovaya A , Kolodkina V , Limeschenko E , Titov L , Narvskaya O 2009 Novel macroarray-based method of Corynebacterium diphtheriae genotyping: evaluation in a field study in Belarus . Eur. J. Clin. Microbiol. Infect. Dis . 28 , 701 – 703 . ( 10.1007/s10096-008-0674-4 ) 19089478 

  105. 105 Mokrousov I , Limeschenko E , Vyazovaya A , Narvskaya O 2007 Corynebacterium diphtheriae spoligotyping based on combined use of two CRISPR loci . Biotechnol. J . 2 , 901 – 906 . ( 10.1002/biot.200700035 ) 17431853 

  106. 106 Bikard D , Euler CW , Jiang W , Nussenzweig PM , Goldberg GW , Duportet X , Fischetti VA , Marraffini LA 2014 Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials . Nat. Biotechnol . 32 , 1146 – 1150 . ( 10.1038/nbt.3043 ) 25282355 

  107. 107 Citorik RJ , Mimee M , Lu TK 2014 Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases . Nat. Biotechnol . 32 , 1141 – 1145 . ( 10.1038/nbt.3011 ) 25240928 

  108. 108 Gomaa AA , Klumpe HE , Luo ML , Selle K , Barrangou R , Beisel CL 2014 Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems . mBio 5 , e00928-13. ( 10.1128/mBio.00928-13 ) 

  109. 109 Yosef I , Manor M , Kiro R , Qimron U 2015 Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria . Proc. Natl Acad. Sci. USA 112 , 7267 – 7272 . ( 10.1073/pnas.1500107112 ) 26060300 

  110. 110 Savić N , Schwank G 2016 Advances in therapeutic CRISPR/Cas9 genome editing . Transl. Res . 168 , 15 – 21 . ( 10.1016/j.trsl.2015.09.008 ) 26470680 

  111. 111 Urnov FD , Rebar EJ , Holmes MC , Zhang HS , Gregory PD 2010 Genome editing with engineered zinc finger nucleases . Nat. Rev. Genet . 11 , 636 – 646 . ( 10.1038/nrg2842 ) 20717154 

  112. 112 Joung JK , Sander JD 2012 TALENs: a widely applicable technology for targeted genome editing . Nat. Rev. Mol. Cell Biol . 14 , 49 – 55 . ( 10.1038/nrm3486 ) 23169466 

  113. 113 Dudás A , Chovanec M 2004 DNA double-strand break repair by homologous recombination . Mutat. Res . 566 , 131 – 167 . ( 10.1016/j.mrrev.2003.07.001 ) 15164978 

  114. 114 van den Bosch M , Lohman PHM , Pastink A 2002 DNA double-strand break repair by homologous recombination . Biol. Chem . 383 , 873 – 892 . 12222678 

  115. 115 Barnes DE 2001 Non-homologous end joining as a mechanism of DNA repair . Curr. Biol . 11 , R455 – R457 . ( 10.1016/S0960-9822(01)00279-2 ) 11448783 

  116. 116 Mali P , Yang L , Esvelt KM , Aach J , Guell M , DiCarlo JE , Norville JE , Church GM 2013 RNA-guided human genome engineering via Cas9 . Science 339 , 823 – 826 . ( 10.1126/science.1232033 ) 23287722 

  117. 117 Cong L et al. 2013 Multiplex genome engineering using CRISPR/Cas systems . Science 339 , 819 – 823 . ( 10.1126/science.1231143 ) 23287718 

  118. 118 Qi LS , Larson MH , Gilbert LA , Doudna JA , Weissman JS , Arkin AP , Lim WA 2013 Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression . Cell 152 , 1173 – 1183 . ( 10.1016/j.cell.2013.02.022 ) 23452860 

  119. 119 Larson MH , Gilbert LA , Wang X , Lim WA , Weissman JS , Qi LS 2013 CRISPR interference (CRISPRi) for sequence-specific control of gene expression . Nat. Protoc . 8 , 2180 – 2196 . ( 10.1038/nprot.2013.132 ) 24136345 

  120. 120 Maeder ML , Linder SJ , Cascio VM , Fu Y , Ho QH , Joung JK 2013 CRISPR RNA—guided activation of endogenous human genes . Nat. Methods 10 , 977 – 979 . ( 10.1038/nmeth.2598 ) 23892898 

  121. 121 Gilbert LA et al. 2013 CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes . Cell 154 , 442 – 451 . ( 10.1016/j.cell.2013.06.044 ) 23849981 

  122. 122 Bikard D , Jiang W , Samai P , Hochschild A , Zhang F , Marraffini LA 2013 Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system . Nucleic Acids Res . 41 , 7429 – 7437 . ( 10.1093/nar/gkt520 ) 23761437 

  123. 123 Hilton IB , D'Ippolito AM , Vockley CM , Thakore PI , Crawford GE , Reddy TE , Gersbach CA 2015 Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers . Nat. Biotechnol . 33 , 510 – 517 . ( 10.1038/nbt.3199 ) 25849900 

  124. 124 Thakore PI et al. 2015 Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements . Nat. Methods 12 , 1143 – 1149 . ( 10.1038/nmeth.3630 ) 26501517 

  125. 125 Mougiakos I , Bosma EF , de Vos WM , van Kranenburg R , van der Oost J 2016 Next generation prokaryotic engineering: the CRISPR-Cas toolkit . Trends Biotechnol . 34 , 575 – 587 . ( 10.1016/j.tibtech.2016.02.004 ) 26944793 

  126. 126 Rath D , Amlinger L , Hoekzema M , Devulapally PR , Lundgren M 2015 Efficient programmable gene silencing by Cascade . Nucleic Acids Res . 43 , 237 – 246 . ( 10.1093/nar/gku1257 ) 25435544 

  127. 127 Luo ML , Mullis AS , Leenay RT , Beisel CL 2015 Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression . Nucleic Acids Res . 43 , 674 – 681 . ( 10.1093/nar/gku971 ) 25326321 

  128. 128 Schwank G et al. 2013 Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients . Cell Stem Cell . 13 , 653 – 658 . ( 10.1016/j.stem.2013.11.002 ) 24315439 

  129. 129 Yin H et al. 2014 Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype . Nat. Biotechnol . 32 , 551 – 553 . ( 10.1038/nbt.2884 ) 24681508 

  130. 130 Hu W et al. 2014 RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection . Proc. Natl Acad. Sci. USA 111 , 11 461 – 11 466 . ( 10.1073/pnas.1405186111 ) 

  131. 131 Wang Z et al. 2016 CRISPR/Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape . Cell Rep . 15 , 481 – 489 . ( 10.1016/j.celrep.2016.03.042 ) 27068471 

  132. 132 Berger EA , Murphy PM , Farber JM 1999 Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease . Annu. Rev. Immunol . 17 , 657 – 700 . ( 10.1146/annurev.immunol.17.1.657 ) 10358771 

  133. 133 Samson M et al. 1996 Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene . Nature 382 , 722 – 725 . ( 10.1038/382722a0 ) 8751444 

  134. 134 Ye L et al. 2014 Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection . Proc. Natl Acad. Sci. USA 111 , 9591 – 9596 . ( 10.1073/pnas.1407473111 ) 24927590 

  135. 135 Chen S et al. 2015 Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis . Cell 160 , 1246 – 1260 . ( 10.1016/j.cell.2015.02.038 ) 25748654 

  136. 136 Koike-Yusa H , Li Y , Tan E-P , Velasco-Herrera MDC , Yusa K 2013 Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library . Nat. Biotechnol . 32 , 267 – 273 . ( 10.1038/nbt.2800 ) 24535568 

  137. 137 Shalem O et al. 2014 Genome-scale CRISPR-Cas9 knockout screening in human cells . Science 343 , 84 – 87 . ( 10.1126/science.1247005 ) 24336571 

  138. 138 Wang T , Wei JJ , Sabatini DM , Lander ES 2014 Genetic screens in human cells using the CRISPR-Cas9 system . Science 343 , 80 – 84 . ( 10.1126/science.1246981 ) 24336569 

  139. 139 Ishino Y , Shinagawa H , Makino K , Amemura M , Nakata A 1987 Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli , and identification of the gene product . J. Bacteriol . 169 , 5429 – 5433 . 3316184 

  140. 140 Bolotin A , Quinquis B , Sorokin A , Ehrlich SD 2005 Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin . Microbiology 151 , 2551 – 2561 . ( 10.1099/mic.0.28048-0 ) 16079334 

  141. 141 Sapranauskas R , Gasiunas G , Fremaux C , Barrangou R , Horvath P , Siksnys V 2011 The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli . Nucleic Acids Res . 39 , 9275 – 9282 . ( 10.1093/nar/gkr606 ) 21813460 

  142. 142 Pul U , Wurm R , Arslan Z , Geissen R , Hofmann N , Wagner R 2010 Identification and characterization of E. coli CRISPR- cas promoters and their silencing by H-NS . Mol. Microbiol . 75 , 1495 – 1512 . ( 10.1111/j.1365-2958.2010.07073.x ) 20132443 

  143. 143 Bikard D , Hatoum-Aslan A , Mucida D , Marraffini LA 2012 CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection . Cell Host Microbe 12 , 177 – 186 . ( 10.1016/j.chom.2012.06.003 ) 22901538 

  144. 144 Palmer KL , Gilmore MS 2010 Multidrug-resistant enterococci lack CRISPR- cas . mBio 1 , e00227-10. ( 10.1128/mBio.00227-10 ) 

  145. 145 Hatoum-Aslan A , Marraffini LA 2014 Impact of CRISPR immunity on the emergence and virulence of bacterial pathogens . Curr. Opin. Microbiol . 17 , 82 – 90 . ( 10.1016/j.mib.2013.12.001 ) 24581697 

  146. 146 Gophna U , Kristensen DM , Wolf YI , Popa O , Drevet C , Koonin EV 2015 No evidence of inhibition of horizontal gene transfer by CRISPR–Cas on evolutionary timescales . ISME J . 9 , 2021 – 2027 . ( 10.1038/ismej.2015.20 ) 25710183 

  147. 147 Westra ER et al. 2015 Parasite exposure drives selective evolution of constitutive versus inducible defense . Curr. Biol . 25 , 1043 – 1049 . ( 10.1016/j.cub.2015.01.065 ) 25772450 

  148. 148 Weinberger AD , Wolf YI , Lobkovsky AE , Gilmore MS , Koonin EV 2012 Viral diversity threshold for adaptive immunity in prokaryotes . mBio 3 , e00456-12. ( 10.1128/mBio.00456-12 ) 

  149. 149 Vale PF , Lafforgue G , Gatchitch F , Gardan R , Moineau S , Gandon S 2015 Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus . Proc. R. Soc. B 282 , 20151270 ( 10.1098/rspb.2015.1270 ) 

  150. 150 Hsu PD , Lander ES , Zhang F 2014 Development and applications of CRISPR-Cas9 for genome engineering . Cell 157 , 1262 – 1278 . ( 10.1016/j.cell.2014.05.010 ) 24906146 

  151. 151 Fu Y , Foden JA , Khayter C , Maeder ML , Reyon D , Joung JK , Sander JD 2013 High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells . Nat. Biotechnol . 31 , 822 – 826 . ( 10.1038/nbt.2623 ) 23792628 

  152. 152 Ramakrishna S , Kwaku Dad A-B , Beloor J , Gopalappa R , Lee S-K , Kim H 2014 Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA . Genome Res . 24 , 1020 – 1027 . ( 10.1101/gr.171264.113 ) 24696462 

  153. 153 Kim S , Kim D , Cho SW , Kim J , Kim J-S 2014 Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins . Genome Res . 24 , 1012 – 1019 . ( 10.1101/gr.171322.113 ) 24696461 

  154. 154 Ran FA et al. 2013 Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity . Cell 154 , 1380 – 1389 . ( 10.1016/j.cell.2013.08.021 ) 23992846 

  155. 155 Fu Y , Sander JD , Reyon D , Cascio VM , Joung JK 2014 Improving CRISPR-Cas nuclease specificity using truncated guide RNAs . Nat. Biotechnol . 32 , 279 – 284 . ( 10.1038/nbt.2808 ) 24463574 

  156. 156 Cho SW , Kim S , Kim Y , Kweon J , Kim HS , Bae S , Kim J-S 2014 Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases . Genome Res . 24 , 132 – 141 . ( 10.1101/gr.162339.113 ) 24253446 

  157. 157 Gori JL , Hsu PD , Maeder ML , Shen S , Welstead GG , Bumcrot D 2015 Delivery and specificity of CRISPR/Cas9 genome editing technologies for human gene therapy . Hum. Gene Ther . 26 , 443 – 451 . ( 10.1089/hum.2015.074 ) 26068008 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로