최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Philosophical transactions. Biological sciences, v.371 no.1707, 2016년, pp.20150496 -
Hille, Frank (Max Planck Institute for Infection Biology) , Charpentier, Emmanuelle (Max Planck Institute for Infection Biology)
Prokaryotes have evolved several defence mechanisms to protect themselves from viral predators. Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) display a prokaryotic adaptive immune system that memorizes previous infections by integrating short ...
1 Barrangou R , Fremaux C , Deveau H , Richards M , Boyaval P , Moineau S , Romero DA , Horvath P 2007 CRISPR provides acquired resistance against viruses in prokaryotes . Science 315 , 1709 – 1712 . ( 10.1126/science.1138140 ) 17379808
2 Haft DH , Selengut J , Mongodin EF , Nelson KE 2005 A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes . PLoS Comput. Biol . 1 , e60 ( 10.1371/journal.pcbi.0010060 ) 16292354
3 Makarova KS , Grishin NV , Shabalina SA , Wolf YI , Koonin EV 2006 A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action . Biol. Direct . 1 , 7 ( 10.1186/1745-6150-1-7 ) 16545108
4 Mojica FJ , Diez-Villasenor C , Garcia-Martinez J , Soria E 2005 Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements . J. Mol. Evol . 60 , 174 – 182 . ( 10.1007/s00239-004-0046-3 ) 15791728
5 Makarova KS et al. 2015 An updated evolutionary classification of CRISPR–Cas systems . Nat. Rev. Microbiol . 13 , 722 – 736 . ( 10.1038/nrmicro3569 ) 26411297
6 Makarova KS et al. 2011 Evolution and classification of the CRISPR-Cas systems . Nat. Rev. Microbiol . 9 , 467 – 477 . ( 10.1038/nrmicro2577 ) 21552286
7 Shmakov S et al. 2015 Discovery and functional characterization of diverse class 2 CRISPR-Cas systems . Mol. Cell . 60 , 385 – 397 . ( 10.1016/j.molcel.2015.10.008 ) 26593719
8 Fineran PC , Charpentier E 2012 Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information . Virology 434 , 202 – 209 . ( 10.1016/j.virol.2012.10.003 ) 23123013
9 Rath D , Amlinger L , Rath A , Lundgren M 2015 The CRISPR-Cas immune system: biology, mechanisms and applications . Biochimie 117 , 119 – 128 . ( 10.1016/j.biochi.2015.03.025 ) 25868999
10 Nunez JK , Kranzusch PJ , Noeske J , Wright AV , Davies CW , Doudna JA 2014 Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity . Nat. Struct. Mol. Biol . 21 , 528 – 534 . ( 10.1038/nsmb.2820 ) 24793649
11 Nuñez JK , Lee ASY , Engelman A , Doudna JA 2015 Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity . Nature 519 , 193 – 198 . ( 10.1038/nature14237 ) 25707795
12 Rollie C , Schneider S , Brinkmann AS , Bolt EL , White MF 2015 Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition . eLife 4 , e08716 ( 10.7554/eLife.08716 )
13 Arslan Z , Hermanns V , Wurm R , Wagner R , Pul U 2014 Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system . Nucleic Acids Res . 42 , 7884 – 7893 . ( 10.1093/nar/gku510 ) 24920831
14 Babu M et al. 2011 A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair . Mol. Microbiol . 79 , 484 – 502 . ( 10.1111/j.1365-2958.2010.07465.x ) 21219465
15 Wiedenheft B , Zhou K , Jinek M , Coyle SM , Ma W , Doudna JA 2009 Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense . Structure 17 , 904 – 912 . ( 10.1016/j.str.2009.03.019 ) 19523907
16 Beloglazova N et al. 2008 A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats . J. Biol. Chem . 283 , 20 361 – 20 371 . ( 10.1074/jbc.M803225200 )
17 Yosef I , Goren MG , Qimron U 2012 Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli . Nucleic Acids Res . 40 , 5569 – 5576 . ( 10.1093/nar/gks216 ) 22402487
18 Wei Y , Chesne MT , Terns RM , Terns MP 2015 Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus . Nucleic Acids Res . 43 , 1749 – 1758 . ( 10.1093/nar/gku1407 ) 25589547
19 Li M , Wang R , Zhao D , Xiang H 2014 Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process . Nucleic Acids Res . 42 , 2483 – 2492 . ( 10.1093/nar/gkt1154 ) 24265226
20 Vorontsova D et al. 2015 Foreign DNA acquisition by the I-F CRISPR–Cas system requires all components of the interference machinery . Nucleic Acids Res . 43 , 10 848 – 10 860 . ( 10.1093/nar/gkv1261 )
21 Heler R , Samai P , Modell JW , Weiner C , Goldberg GW , Bikard D , Marraffini LA 2015 Cas9 specifies functional viral targets during CRISPR-Cas adaptation . Nature 519 , 199 – 202 . ( 10.1038/nature14245 ) 25707807
22 Wei Y , Terns RM , Terns MP 2015 Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation . Genes Dev . 29 , 356 – 361 . ( 10.1101/gad.257550.114 ) 25691466
23 Silas S , Mohr G , Sidote DJ , Markham LM , Sanchez-Amat A , Bhaya D , Lambowitz AM , Fire AZ 2016 Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein . Science 351 , paad4234. ( 10.1126/science.aad4234 )
24 Swarts DC , Mosterd C , van Passel MW , Brouns SJ 2012 CRISPR interference directs strand specific spacer acquisition . PLoS ONE 7 , e35888 ( 10.1371/journal.pone.0035888 ) 22558257
25 Datsenko KA , Pougach K , Tikhonov A , Wanner BL , Severinov K , Semenova E 2012 Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system . Nat. Commun . 3 , 945 ( 10.1038/ncomms1937 ) 22781758
26 Deveau H , Barrangou R , Garneau JE , Labonte J , Fremaux C , Boyaval P , Romero DA , Horvath P , Moineau S 2008 Phage response to CRISPR-encoded resistance in Streptococcus thermophilus . J. Bacteriol . 190 , 1390 – 1400 . ( 10.1128/JB.01412-07 ) 18065545
27 Mojica FJ , Diez-Villasenor C , Garcia-Martinez J , Almendros C 2009 Short motif sequences determine the targets of the prokaryotic CRISPR defence system . Microbiology 155 , 733 – 740 . ( 10.1099/mic.0.023960-0 ) 19246744
28 Fonfara I , Richter H , Bratovič M , Le Rhun A , Charpentier E 2016 The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA . Nature 532 , 517 – 521 . ( 10.1038/nature17945 ) 27096362
29 Zetsche B et al. 2015 Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system . Cell 163 , 759 – 771 . ( 10.1016/j.cell.2015.09.038 ) 26422227
30 Richter C , Dy RL , McKenzie RE , Watson BNJ , Taylor C , Chang JT , McNeil MB , Staals RHJ , Fineran PC 2014 Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer . Nucleic Acids Res . 42 , 8516 – 8526 . ( 10.1093/nar/gku527 ) 24990370
31 Fineran PC , Gerritzen MJH , Suarez-Diez M , Kunne T , Boekhorst J , van Hijum SAFT , Staals RHJ , Brouns SJJ 2014 Degenerate target sites mediate rapid primed CRISPR adaptation . Proc. Natl Acad. Sci. USA 111 , E1629 – E1638 . ( 10.1073/pnas.1400071111 ) 24711427
32 Redding S , Sternberg SH , Marshall M , Gibb B , Bhat P , Guegler CK , Wiedenheft B , Doudna JA , Greene EC 2015 Surveillance and processing of foreign DNA by the Escherichia coli CRISPR-Cas system . Cell 163 , 854 – 865 . ( 10.1016/j.cell.2015.10.003 ) 26522594
33 Carte J , Wang R , Li H , Terns RM , Terns MP 2008 Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes . Genes Dev . 22 , 3489 – 3496 . ( 10.1101/gad.1742908 ) 19141480
34 Haurwitz RE , Jinek M , Wiedenheft B , Zhou K , Doudna JA 2010 Sequence- and structure-specific RNA processing by a CRISPR endonuclease . Science 329 , 1355 – 1358 . ( 10.1126/science.1192272 ) 20829488
35 Garside EL , Schellenberg MJ , Gesner EM , Bonanno JB , Sauder JM , Burley SK , Almo SC , Mehta G , MacMillan AM 2012 Cas5d processes pre-crRNA and is a member of a larger family of CRISPR RNA endonucleases . RNA 18 , 2020 – 2028 . ( 10.1261/rna.033100.112 ) 23006625
36 Nam KH , Haitjema C , Liu X , Ding F , Wang H , DeLisa MP , Ke A 2012 Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system . Structure 20 , 1574 – 1584 . ( 10.1016/j.str.2012.06.016 ) 22841292
37 Richter H , Zoephel J , Schermuly J , Maticzka D , Backofen R , Randau L 2012 Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis . Nucleic Acids Res . 40 , 9887 – 9896 . ( 10.1093/nar/gks737 ) 22879377
38 Sashital DG , Jinek M , Doudna JA 2011 An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3 . Nat. Struct. Mol. Biol . 18 , 680 – 687 . ( 10.1038/nsmb.2043 ) 21572442
39 Hale CR , Zhao P , Olson S , Duff MO , Graveley BR , Wells L , Terns RM , Terns MP 2009 RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex . Cell 139 , 945 – 956 . ( 10.1016/j.cell.2009.07.040 ) 19945378
40 Hatoum-Aslan A , Maniv I , Marraffini LA 2011 Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site . Proc. Natl Acad. Sci. USA 108 , 21 218 – 21 222 . ( 10.1073/pnas.1112832108 )
41 Charpentier E , Richter H , van der Oost J , White MF 2015 Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity . FEMS Microbiol. Rev . 39 , 428 – 441 . ( 10.1093/femsre/fuv023 ) 25994611
42 Deltcheva E , Chylinski K , Sharma CM , Gonzales K , Chao Y , Pirzada ZA , Eckert MR , Vogel J , Charpentier E 2011 CRISPR RNA maturation by trans -encoded small RNA and host factor RNase III . Nature 471 , 602 – 607 . ( 10.1038/nature09886 ) 21455174
43 Zhang Y , Heidrich N , Ampattu BJ , Gunderson CW , Seifert HS , Schoen C , Vogel J , Sontheimer EJ 2013 Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis . Mol. Cell 50 , 488 – 503 . ( 10.1016/j.molcel.2013.05.001 ) 23706818
44 Bhaya D , Davison M , Barrangou R 2011 CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation . Annu. Rev. Genet . 45 , 273 – 297 . ( 10.1146/annurev-genet-110410-132430 ) 22060043
45 Jinek M , Chylinski K , Fonfara I , Hauer M , Doudna JA , Charpentier E 2012 A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity . Science 337 , 816 – 821 . ( 10.1126/science.1225829 ) 22745249
46 Marraffini LA , Sontheimer EJ 2010 CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea . Nat. Rev. Genet . 11 , 181 – 190 . ( 10.1038/nrg2749 ) 20125085
47 Wang R , Preamplume G , Terns MP , Terns RM , Li H 2011 Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage . Structure 19 , 257 – 264 . ( 10.1016/j.str.2010.11.014 ) 21300293
48 Westra ER , Nilges B , van Erp PB , van der Oost J , Dame RT , Brouns SJ 2012 Cascade-mediated binding and bending of negatively supercoiled DNA . RNA Biol . 9 , 1134 – 1138 . ( 10.4161/rna.21410 ) 22954644
49 Zhang J et al. 2012 Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity . Mol. Cell . 45 , 303 – 313 . ( 10.1016/j.molcel.2011.12.013 ) 22227115
50 Jiang W , Bikard D , Cox D , Zhang F , Marraffini LA 2013 RNA-guided editing of bacterial genomes using CRISPR-Cas systems . Nat. Biotechnol . 31 , 233 – 239 . ( 10.1038/nbt.2508 ) 23360965
51 Semenova E , Jore MM , Datsenko KA , Semenova A , Westra ER , Wanner B , van der Oost J , Brouns SJJ , Severinov K 2011 Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence . Proc. Natl Acad. Sci. USA 108 , 10 098 – 10 103 . ( 10.1073/pnas.1104144108 )
52 Westra ER , Semenova E , Datsenko KA , Jackson RN , Wiedenheft B , Severinov K , Brouns SJ 2013 Type I-E CRISPR-Cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition . PLoS Genet . 9 , e1003742 ( 10.1371/journal.pgen.1003742 ) 24039596
53 Marraffini LA , Sontheimer EJ 2010 Self versus non-self discrimination during CRISPR RNA-directed immunity . Nature 463 , 568 – 571 . ( 10.1038/nature08703 ) 20072129
54 Brouns SJ et al. 2008 Small CRISPR RNAs guide antiviral defense in prokaryotes . Science 321 , 960 – 964 . ( 10.1126/science.1159689 ) 18703739
55 Westra ER et al. 2012 CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3 . Mol. Cell . 46 , 595 – 605 . ( 10.1016/j.molcel.2012.03.018 ) 22521689
56 Marraffini LA , Sontheimer EJ 2008 CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA . Science 322 , 1843 – 1845 . ( 10.1126/science.1165771 ) 19095942
57 Deng L , Garrett RA , Shah SA , Peng X , She Q 2013 A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus . Mol. Microbiol . 87 , 1088 – 1099 . ( 10.1111/mmi.12152 ) 23320564
58 Goldberg GW , Jiang W , Bikard D , Marraffini LA 2014 Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting . Nature 514 , 633 – 637 . ( 10.1038/nature13637 ) 25174707
59 Samai P , Pyenson N , Jiang W , Goldberg GW , Hatoum-Aslan A , Marraffini LA 2015 Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity . Cell 161 , 1164 – 1174 . ( 10.1016/j.cell.2015.04.027 ) 25959775
60 Staals RHJ et al. 2014 RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus . Mol. Cell 56 , 518 – 530 . ( 10.1016/j.molcel.2014.10.005 ) 25457165
61 Tamulaitis G , Kazlauskiene M , Manakova E , Venclovas Č , Nwokeoji AO , Dickman MJ , Horvath P , Siksnys V 2014 Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus . Mol. Cell . 56 , 506 – 517 . ( 10.1016/j.molcel.2014.09.027 ) 25458845
62 Zebec Z , Manica A , Zhang J , White MF , Schleper C 2014 CRISPR-mediated targeted mRNA degradation in the archaeon Sulfolobus solfataricus . Nucleic Acids Res . 42 , 5280 – 5288 . ( 10.1093/nar/gku161 ) 24603867
63 Garneau JE et al. 2010 The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA . Nature 468 , 67 – 71 . ( 10.1038/nature09523 ) 21048762
64 Nordström K , Forsgren A 1974 Effect of protein A on adsorption of bacteriophages to Staphylococcus aureus . J. Virol . 14 , 198 – 202 . 4277011
65 Liu M et al. 2002 Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage . Science 295 , 2091 – 2094 . ( 10.1126/science.1067467 ) 11896279
66 Zaleski P , Wojciechowski M , Piekarowicz A 2005 The role of Dam methylation in phase variation of Haemophilus influenzae genes involved in defence against phage infection . Microbiology 151 , 3361 – 3369 . ( 10.1099/mic.0.28184-0 ) 16207918
67 Lu M-J , Henning U 1994 Superinfection exclusion by T-even-type coliphages . Trends Microbiol . 2 , 137 – 139 . ( 10.1016/0966-842X(94)90601-7 ) 8012757
68 Sun X , Göhler A , Heller KJ , Neve H 2006 The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis . Virology 350 , 146 – 157 . ( 10.1016/j.virol.2006.03.001 ) 16643978
69 Pingoud A , Fuxreiter M , Pingoud V , Wende W 2005 Type II restriction endonucleases: structure and mechanism . Cell Mol. Life Sci . 62 , 685 – 707 . ( 10.1007/s00018-004-4513-1 ) 15770420
70 Bickle TA , Krüger DH 1993 Biology of DNA restriction . Microbiol. Rev . 57 , 434 – 450 . 8336674
71 Parma DH , Snyder M , Sobolevski S , Nawroz M , Brody E , Gold L 1992 The Rex system of bacteriophage lambda: tolerance and altruistic cell death . Genes Dev . 6 , 497 – 510 . ( 10.1101/gad.6.3.497 ) 1372278
72 Bingham R , Ekunwe SI , Falk S , Snyder L , Kleanthous C 2000 The major head protein of bacteriophage T4 binds specifically to elongation factor Tu . J. Biol. Chem . 275 , 23 219 – 23 226 . ( 10.1074/jbc.M002546200 )
73 Aizenman E , Engelberg-Kulka H , Glaser G 1996 An Escherichia coli chromosomal ‘addiction module’ regulated by guanosine [corrected] 3′,5′-bispyrophosphate: a model for programmed bacterial cell death . Proc. Natl Acad. Sci. USA 93 , 6059 – 6063 . ( 10.1073/pnas.93.12.6059 ) 8650219
74 Fineran PC , Blower TR , Foulds IJ , Humphreys DP , Lilley KS , Salmond GPC 2009 The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair . Proc. Natl Acad. Sci. USA 106 , 894 – 899 . ( 10.1073/pnas.0808832106 ) 19124776
75 Goldfarb T , Sberro H , Weinstock E , Cohen O , Doron S , Charpak-Amikam Y , Afik S , Ofir G , Sorek R 2015 BREX is a novel phage resistance system widespread in microbial genomes . EMBO J . 34 , 169 – 183 . ( 10.15252/embj.201489455 ) 25452498
76 Swarts DC et al. 2014 DNA-guided DNA interference by a prokaryotic Argonaute . Nature 507 , 258 – 261 . ( 10.1038/nature12971 ) 24531762
77 Kaya E , Doxzen KW , Knoll KR , Wilson RC , Strutt SC , Kranzusch PJ , Doudna JA 2016 A bacterial Argonaute with noncanonical guide RNA specificity . Proc. Natl Acad. Sci. USA 113 , 4057 – 4062 . ( 10.1073/pnas.1524385113 ) 27035975
78 Olovnikov I , Chan K , Sachidanandam R , Newman DK , Aravin AA 2013 Bacterial Argonaute samples the transcriptome to identify foreign DNA . Mol. Cell 51 , 594 – 605 . ( 10.1016/j.molcel.2013.08.014 ) 24034694
79 van Houte S et al. 2016 The diversity-generating benefits of a prokaryotic adaptive immune system . Nature 532 , 385 – 388 . ( 10.1038/nature17436 ) 27074511
80 Bondy-Denomy J , Pawluk A , Maxwell KL , Davidson AR 2013 Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system . Nature 493 , 429 – 432 . ( 10.1038/nature11723 ) 23242138
81 Pawluk A , Bondy-Denomy J , Cheung VHW , Maxwell KL , Davidson AR 2014 A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa . mBio 5 , e00896-14. ( 10.1128/mBio.00896-14 )
82 Bondy-Denomy J , Garcia B , Strum S , Du M , Rollins MF , Hidalgo-Reyes Y , Wiedenheft B , Maxwell KL , Davidson AR 2015 Multiple mechanisms for CRISPR–Cas inhibition by anti-CRISPR proteins . Nature 526 , 136 – 139 . ( 10.1038/nature15254 ) 26416740
83 Seed KD , Lazinski DW , Calderwood SB , Camilli A 2013 A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity . Nature 494 , 489 – 491 . ( 10.1038/nature11927 ) 23446421
84 Smith GR 2012 How RecBCD enzyme and Chi promote DNA break repair and recombination: a molecular biologist's view . Microbiol. Mol. Biol. Rev . 76 , 217 – 228 . ( 10.1128/MMBR.05026-11 ) 22688812
85 Levy A , Goren MG , Yosef I , Auster O , Manor M , Amitai G , Edgar R , Qimron U , Sorek R 2015 CRISPR adaptation biases explain preference for acquisition of foreign DNA . Nature 520 , 505 – 510 . ( 10.1038/nature14302 ) 25874675
86 Ivančić-Baće I , Cass SD , Wearne SJ , Bolt EL 2015 Different genome stability proteins underpin primed and naïve adaptation in E. coli CRISPR-Cas immunity . Nucleic Acids Res . 43 , 10 821 – 10 830 . ( 10.1093/nar/gkv1213 )
87 Sampson TR , Saroj SD , Llewellyn AC , Tzeng Y-L , Weiss DS 2013 A CRISPR/Cas system mediates bacterial innate immune evasion and virulence . Nature 497 , 254 – 257 . ( 10.1038/nature12048 ) 23584588
88 Louwen R et al. 2013 A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain–Barré syndrome . Eur. J. Clin. Microbiol. Infect. Dis . 32 , 207 – 226 . ( 10.1007/s10096-012-1733-4 ) 22945471
89 Gunderson FF , Cianciotto NP 2013 The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae . mBio 4 , e00074-13. ( 10.1128/mBio.00074-13 )
90 Mandin P , Repoila F , Vergassola M , Geissmann T , Cossart P 2007 Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets . Nucleic Acids Res . 35 , 962 – 974 . ( 10.1093/nar/gkl1096 ) 17259222
91 Kroos L , Kaiser D 1987 Expression of many developmentally regulated genes in Myxococcus depends on a sequence of cell interactions . Genes Amp. Dev . 1 , 840 – 854 . ( 10.1101/gad.1.8.840 )
92 Thöny-Meyer L , Kaiser D 1993 devRS, an autoregulated and essential genetic locus for fruiting body development in Myxococcus xanthus . J. Bacteriol . 175 , 7450 – 7462 . 7693658
93 Viswanathan P , Murphy K , Julien B , Garza AG , Kroos L 2007 Regulation of dev , an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats . J. Bacteriol . 189 , 3738 – 3750 . ( 10.1128/JB.00187-07 ) 17369305
94 Wallace RA , Black WP , Yang X , Yang Z 2014 A CRISPR with roles in Myxococcus xanthus development and exopolysaccharide production . J. Bacteriol . 196 , 4036 – 4043 . ( 10.1128/JB.02035-14 ) 25201946
95 Vercoe RB et al. 2013 Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands . PLoS Genet . 9 , e1003454 ( 10.1371/journal.pgen.1003454 ) 23637624
96 De Boy RT , Mongodin EF , Emerson JB , Nelson KE 2006 Chromosome evolution in the Thermotogales : large-scale inversions and strain diversification of CRISPR sequences . J. Bacteriol . 188 , 2364 – 2374 . ( 10.1128/JB.188.7.2364-2374.2006 ) 16547022
97 Stern A , Keren L , Wurtzel O , Amitai G , Sorek R 2010 Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet . 26 , 335 – 340 . ( 10.1016/j.tig.2010.05.008 ) 20598393
98 Groenen PM , Bunschoten AE , van Soolingen D , van Embden JD 1993 Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis ; application for strain differentiation by a novel typing method . Mol. Microbiol . 10 , 1057 – 1065 . ( 10.1111/j.1365-2958.1993.tb00976.x ) 7934856
99 Kamerbeek J et al. 1997 Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology . J. Clin. Microbiol . 35 , 907 – 914 . 9157152
100 Pourcel C , Salvignol G , Vergnaud G 2005 CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies . Microbiology 151 , 653 – 663 . ( 10.1099/mic.0.27437-0 ) 15758212
101 Cui Y et al. 2008 Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats . PLoS ONE 3 , e2652 ( 10.1371/journal.pone.0002652 ) 18612419
102 Liu F , Kariyawasam S , Jayarao BM , Barrangou R , Gerner-Smidt P , Ribot EM , Knabel SJ , Dudley EG 2011 Subtyping Salmonella enterica serovar Enteritidis isolates from different sources by using sequence typing based on virulence genes and clustered regularly interspaced short palindromic repeats (CRISPRs) . Appl. Environ. Microbiol . 77 , 4520 – 4526 . ( 10.1128/AEM.00468-11 ) 21571881
103 Liu F , Barrangou R , Gerner-Smidt P , Ribot EM , Knabel SJ , Dudley EG 2011 Novel virulence gene and clustered regularly interspaced short palindromic repeat (CRISPR) multilocus sequence typing scheme for subtyping of the major serovars of Salmonella enterica subsp. enterica . Appl. Environ. Microbiol . 77 , 1946 – 1956 . ( 10.1128/AEM.02625-10 ) 21278266
104 Mokrousov I , Vyazovaya A , Kolodkina V , Limeschenko E , Titov L , Narvskaya O 2009 Novel macroarray-based method of Corynebacterium diphtheriae genotyping: evaluation in a field study in Belarus . Eur. J. Clin. Microbiol. Infect. Dis . 28 , 701 – 703 . ( 10.1007/s10096-008-0674-4 ) 19089478
105 Mokrousov I , Limeschenko E , Vyazovaya A , Narvskaya O 2007 Corynebacterium diphtheriae spoligotyping based on combined use of two CRISPR loci . Biotechnol. J . 2 , 901 – 906 . ( 10.1002/biot.200700035 ) 17431853
106 Bikard D , Euler CW , Jiang W , Nussenzweig PM , Goldberg GW , Duportet X , Fischetti VA , Marraffini LA 2014 Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials . Nat. Biotechnol . 32 , 1146 – 1150 . ( 10.1038/nbt.3043 ) 25282355
107 Citorik RJ , Mimee M , Lu TK 2014 Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases . Nat. Biotechnol . 32 , 1141 – 1145 . ( 10.1038/nbt.3011 ) 25240928
108 Gomaa AA , Klumpe HE , Luo ML , Selle K , Barrangou R , Beisel CL 2014 Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems . mBio 5 , e00928-13. ( 10.1128/mBio.00928-13 )
109 Yosef I , Manor M , Kiro R , Qimron U 2015 Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria . Proc. Natl Acad. Sci. USA 112 , 7267 – 7272 . ( 10.1073/pnas.1500107112 ) 26060300
110 Savić N , Schwank G 2016 Advances in therapeutic CRISPR/Cas9 genome editing . Transl. Res . 168 , 15 – 21 . ( 10.1016/j.trsl.2015.09.008 ) 26470680
111 Urnov FD , Rebar EJ , Holmes MC , Zhang HS , Gregory PD 2010 Genome editing with engineered zinc finger nucleases . Nat. Rev. Genet . 11 , 636 – 646 . ( 10.1038/nrg2842 ) 20717154
112 Joung JK , Sander JD 2012 TALENs: a widely applicable technology for targeted genome editing . Nat. Rev. Mol. Cell Biol . 14 , 49 – 55 . ( 10.1038/nrm3486 ) 23169466
113 Dudás A , Chovanec M 2004 DNA double-strand break repair by homologous recombination . Mutat. Res . 566 , 131 – 167 . ( 10.1016/j.mrrev.2003.07.001 ) 15164978
114 van den Bosch M , Lohman PHM , Pastink A 2002 DNA double-strand break repair by homologous recombination . Biol. Chem . 383 , 873 – 892 . 12222678
115 Barnes DE 2001 Non-homologous end joining as a mechanism of DNA repair . Curr. Biol . 11 , R455 – R457 . ( 10.1016/S0960-9822(01)00279-2 ) 11448783
116 Mali P , Yang L , Esvelt KM , Aach J , Guell M , DiCarlo JE , Norville JE , Church GM 2013 RNA-guided human genome engineering via Cas9 . Science 339 , 823 – 826 . ( 10.1126/science.1232033 ) 23287722
117 Cong L et al. 2013 Multiplex genome engineering using CRISPR/Cas systems . Science 339 , 819 – 823 . ( 10.1126/science.1231143 ) 23287718
118 Qi LS , Larson MH , Gilbert LA , Doudna JA , Weissman JS , Arkin AP , Lim WA 2013 Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression . Cell 152 , 1173 – 1183 . ( 10.1016/j.cell.2013.02.022 ) 23452860
119 Larson MH , Gilbert LA , Wang X , Lim WA , Weissman JS , Qi LS 2013 CRISPR interference (CRISPRi) for sequence-specific control of gene expression . Nat. Protoc . 8 , 2180 – 2196 . ( 10.1038/nprot.2013.132 ) 24136345
120 Maeder ML , Linder SJ , Cascio VM , Fu Y , Ho QH , Joung JK 2013 CRISPR RNA—guided activation of endogenous human genes . Nat. Methods 10 , 977 – 979 . ( 10.1038/nmeth.2598 ) 23892898
121 Gilbert LA et al. 2013 CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes . Cell 154 , 442 – 451 . ( 10.1016/j.cell.2013.06.044 ) 23849981
122 Bikard D , Jiang W , Samai P , Hochschild A , Zhang F , Marraffini LA 2013 Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system . Nucleic Acids Res . 41 , 7429 – 7437 . ( 10.1093/nar/gkt520 ) 23761437
123 Hilton IB , D'Ippolito AM , Vockley CM , Thakore PI , Crawford GE , Reddy TE , Gersbach CA 2015 Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers . Nat. Biotechnol . 33 , 510 – 517 . ( 10.1038/nbt.3199 ) 25849900
124 Thakore PI et al. 2015 Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements . Nat. Methods 12 , 1143 – 1149 . ( 10.1038/nmeth.3630 ) 26501517
125 Mougiakos I , Bosma EF , de Vos WM , van Kranenburg R , van der Oost J 2016 Next generation prokaryotic engineering: the CRISPR-Cas toolkit . Trends Biotechnol . 34 , 575 – 587 . ( 10.1016/j.tibtech.2016.02.004 ) 26944793
126 Rath D , Amlinger L , Hoekzema M , Devulapally PR , Lundgren M 2015 Efficient programmable gene silencing by Cascade . Nucleic Acids Res . 43 , 237 – 246 . ( 10.1093/nar/gku1257 ) 25435544
127 Luo ML , Mullis AS , Leenay RT , Beisel CL 2015 Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression . Nucleic Acids Res . 43 , 674 – 681 . ( 10.1093/nar/gku971 ) 25326321
128 Schwank G et al. 2013 Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients . Cell Stem Cell . 13 , 653 – 658 . ( 10.1016/j.stem.2013.11.002 ) 24315439
129 Yin H et al. 2014 Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype . Nat. Biotechnol . 32 , 551 – 553 . ( 10.1038/nbt.2884 ) 24681508
130 Hu W et al. 2014 RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection . Proc. Natl Acad. Sci. USA 111 , 11 461 – 11 466 . ( 10.1073/pnas.1405186111 )
131 Wang Z et al. 2016 CRISPR/Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape . Cell Rep . 15 , 481 – 489 . ( 10.1016/j.celrep.2016.03.042 ) 27068471
132 Berger EA , Murphy PM , Farber JM 1999 Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease . Annu. Rev. Immunol . 17 , 657 – 700 . ( 10.1146/annurev.immunol.17.1.657 ) 10358771
133 Samson M et al. 1996 Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene . Nature 382 , 722 – 725 . ( 10.1038/382722a0 ) 8751444
134 Ye L et al. 2014 Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection . Proc. Natl Acad. Sci. USA 111 , 9591 – 9596 . ( 10.1073/pnas.1407473111 ) 24927590
135 Chen S et al. 2015 Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis . Cell 160 , 1246 – 1260 . ( 10.1016/j.cell.2015.02.038 ) 25748654
136 Koike-Yusa H , Li Y , Tan E-P , Velasco-Herrera MDC , Yusa K 2013 Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library . Nat. Biotechnol . 32 , 267 – 273 . ( 10.1038/nbt.2800 ) 24535568
137 Shalem O et al. 2014 Genome-scale CRISPR-Cas9 knockout screening in human cells . Science 343 , 84 – 87 . ( 10.1126/science.1247005 ) 24336571
138 Wang T , Wei JJ , Sabatini DM , Lander ES 2014 Genetic screens in human cells using the CRISPR-Cas9 system . Science 343 , 80 – 84 . ( 10.1126/science.1246981 ) 24336569
139 Ishino Y , Shinagawa H , Makino K , Amemura M , Nakata A 1987 Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli , and identification of the gene product . J. Bacteriol . 169 , 5429 – 5433 . 3316184
140 Bolotin A , Quinquis B , Sorokin A , Ehrlich SD 2005 Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin . Microbiology 151 , 2551 – 2561 . ( 10.1099/mic.0.28048-0 ) 16079334
141 Sapranauskas R , Gasiunas G , Fremaux C , Barrangou R , Horvath P , Siksnys V 2011 The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli . Nucleic Acids Res . 39 , 9275 – 9282 . ( 10.1093/nar/gkr606 ) 21813460
142 Pul U , Wurm R , Arslan Z , Geissen R , Hofmann N , Wagner R 2010 Identification and characterization of E. coli CRISPR- cas promoters and their silencing by H-NS . Mol. Microbiol . 75 , 1495 – 1512 . ( 10.1111/j.1365-2958.2010.07073.x ) 20132443
143 Bikard D , Hatoum-Aslan A , Mucida D , Marraffini LA 2012 CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection . Cell Host Microbe 12 , 177 – 186 . ( 10.1016/j.chom.2012.06.003 ) 22901538
144 Palmer KL , Gilmore MS 2010 Multidrug-resistant enterococci lack CRISPR- cas . mBio 1 , e00227-10. ( 10.1128/mBio.00227-10 )
145 Hatoum-Aslan A , Marraffini LA 2014 Impact of CRISPR immunity on the emergence and virulence of bacterial pathogens . Curr. Opin. Microbiol . 17 , 82 – 90 . ( 10.1016/j.mib.2013.12.001 ) 24581697
146 Gophna U , Kristensen DM , Wolf YI , Popa O , Drevet C , Koonin EV 2015 No evidence of inhibition of horizontal gene transfer by CRISPR–Cas on evolutionary timescales . ISME J . 9 , 2021 – 2027 . ( 10.1038/ismej.2015.20 ) 25710183
147 Westra ER et al. 2015 Parasite exposure drives selective evolution of constitutive versus inducible defense . Curr. Biol . 25 , 1043 – 1049 . ( 10.1016/j.cub.2015.01.065 ) 25772450
148 Weinberger AD , Wolf YI , Lobkovsky AE , Gilmore MS , Koonin EV 2012 Viral diversity threshold for adaptive immunity in prokaryotes . mBio 3 , e00456-12. ( 10.1128/mBio.00456-12 )
149 Vale PF , Lafforgue G , Gatchitch F , Gardan R , Moineau S , Gandon S 2015 Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus . Proc. R. Soc. B 282 , 20151270 ( 10.1098/rspb.2015.1270 )
150 Hsu PD , Lander ES , Zhang F 2014 Development and applications of CRISPR-Cas9 for genome engineering . Cell 157 , 1262 – 1278 . ( 10.1016/j.cell.2014.05.010 ) 24906146
151 Fu Y , Foden JA , Khayter C , Maeder ML , Reyon D , Joung JK , Sander JD 2013 High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells . Nat. Biotechnol . 31 , 822 – 826 . ( 10.1038/nbt.2623 ) 23792628
152 Ramakrishna S , Kwaku Dad A-B , Beloor J , Gopalappa R , Lee S-K , Kim H 2014 Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA . Genome Res . 24 , 1020 – 1027 . ( 10.1101/gr.171264.113 ) 24696462
153 Kim S , Kim D , Cho SW , Kim J , Kim J-S 2014 Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins . Genome Res . 24 , 1012 – 1019 . ( 10.1101/gr.171322.113 ) 24696461
154 Ran FA et al. 2013 Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity . Cell 154 , 1380 – 1389 . ( 10.1016/j.cell.2013.08.021 ) 23992846
155 Fu Y , Sander JD , Reyon D , Cascio VM , Joung JK 2014 Improving CRISPR-Cas nuclease specificity using truncated guide RNAs . Nat. Biotechnol . 32 , 279 – 284 . ( 10.1038/nbt.2808 ) 24463574
156 Cho SW , Kim S , Kim Y , Kweon J , Kim HS , Bae S , Kim J-S 2014 Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases . Genome Res . 24 , 132 – 141 . ( 10.1101/gr.162339.113 ) 24253446
157 Gori JL , Hsu PD , Maeder ML , Shen S , Welstead GG , Bumcrot D 2015 Delivery and specificity of CRISPR/Cas9 genome editing technologies for human gene therapy . Hum. Gene Ther . 26 , 443 – 451 . ( 10.1089/hum.2015.074 ) 26068008
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.