최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Scientific reports, v.7, 2017년, pp.8585 -
Lataniotis, Lazaros (King’s British Heart Foundation Centre, King’s College London, London, UK) , Albrecht, Andreas (Middlesex University, School of Science and Technology, London, UK) , Kok, Fatma O. (University of Massachusetts Medical School, Department of Molecular, Cell, and Cancer Biology, Worcester, USA) , Monfries, Clinton A. L. (King’s College London, Randall Division, London, UK) , Benedetti, Lorena (King’s College London, Division of Cancer Studies, London, UK) , Lawson, Nathan D. (University of Massachusetts Medical School, Department of Molecular, Cell, and Cancer Biology, Worcester, USA) , Hughes, Simon M. (King’s College London, Randall Division, London, UK) , Steinhofel, Kathleen (King’s College London, Informatics Department, London, UK) , Mayr, Manuel (King’s British Heart Foundation Centre, King’s College London, London, UK) , Zampetaki, Anna (King’s British Heart Foundation Centre, King’s College London, London, UK)
MicroRNAs (miRNAs) are important regulators of diverse physiological and pathophysiological processes. MiRNA families and clusters are two key features in miRNA biology. Here we explore the use of CRISPR/Cas9 as a powerful tool to delineate the function and regulation of miRNA families and clusters....
1. Mendell JT Olson EN MicroRNAs in stress signaling and human disease Cell 2012 148 1172 1187 10.1016/j.cell.2012.02.005 22424228
2. Zampetaki A Mayr M MicroRNAs in vascular and metabolic disease Circ Res 2012 110 508 522 10.1161/CIRCRESAHA.111.247445 22302757
3. Mayr M Zampetaki A Willeit P Willeit J Kiechl S MicroRNAs within the continuum of postgenomics biomarker discovery Arterioscler Thromb Vasc Biol 2013 33 206 214 10.1161/ATVBAHA.112.300141 23325478
4. Zampetaki A Willeit P Drozdov I Kiechl S Mayr M Profiling of circulating microRNAs: from single biomarkers to re-wired networks Cardiovasc Res 2012 93 555 562 10.1093/cvr/cvr266 22028337
5. Mathelier A Carbone A Large scale chromosomal mapping of human microRNA structural clusters Nucleic Acids Res 2013 41 4392 4408 10.1093/nar/gkt112 23444140
6. Wang J Regulatory coordination of clustered microRNAs based on microRNA-transcription factor regulatory network BMC Systems Biol 2011 5 10.1186/1752-0509-5-199
7. Finnerty JR The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases J Mol Biol 2010 402 491 509 10.1016/j.jmb.2010.07.051 20678503
8. Rissland OS Hong SJ Bartel DP MicroRNA destabilization enables dynamic regulation of the miR-16 family in response to cell-cycle changes Mol Cell 2011 43 993 1004 10.1016/j.molcel.2011.08.021 21925387
9. Linsley PS Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression Mol Cell Biol 2007 27 2240 2252 10.1128/MCB.02005-06 17242205
10. Ventura A Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters Cell 2008 132 875 886 10.1016/j.cell.2008.02.019 18329372
11. van Rooij E Olson EN MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles Nature reviews. Drug discovery 2012 11 860 872 10.1038/nrd3864 23080337
12. Shalem O Sanjana NE Zhang F High-throughput functional genomics using CRISPR-Cas9 Nat Rev Genet 2015 16 299 311 10.1038/nrg3899 25854182
13. Doudna JA Charpentier E Genome editing. The new frontier of genome engineering with CRISPR-Cas9 Science 2014 346 10.1126/science.1258096 25430774
14. Jinek M A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science 2012 337 816 821 10.1126/science.1225829 22745249
15. Hsu PD Lander ES Zhang F Development and applications of CRISPR-Cas9 for genome engineering Cell 2014 157 1262 1278 10.1016/j.cell.2014.05.010 24906146
16. Barrangou R Doudna JA Applications of CRISPR technologies in research and beyond Nat Biotechnol 2016 34 933 941 10.1038/nbt.3659 27606440
17. Zhao Y Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system Sci Rep 2014 4 10.1038/srep03943 24487629
18. Chang H CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo Sci Rep 2016 6 10.1038/srep22312 26924382
19. Yoshino H microRNA-210-3p depletion by CRISPR/Cas9 promoted tumorigenesis through revival of TWIST1 in renal cell carcinoma Oncotarget 2017 8 20881 20894 28152509
20. Suzuki HI Young RA Sharp PA Super-Enhancer-Mediated RNA Processing Revealed by Integrative MicroRNA Network Analysis Cell 2017 168 1000 1014 e1015 10.1016/j.cell.2017.02.015 28283057
21. Chen J MicroRNA-126a Directs Lymphangiogenesis Through Interacting With Chemokine and Flt4 Signaling in Zebrafish Arterioscler Thromb Vasc Biol 2016 36 2381 2393 10.1161/ATVBAHA.116.308120 27789478
22. Inoue K The Rodent-Specific MicroRNA Cluster within the Sfmbt2 Gene Is Imprinted and Essential for Placental Development Cell Rep 2017 19 949 956 10.1016/j.celrep.2017.04.018 28467908
23. Zhang YH Pulmonary surfactant synthesis in miRNA-26a-1/miRNA-26a-2 double knockout mice generated using the CRISPR/Cas9 system Am J Transl Res 2017 9 355 365 28337265
24. Narayanan A In vivo mutagenesis of miRNA gene families using a scalable multiplexed CRISPR/Cas9 nuclease system Sci Rep 2016 6 10.1038/srep32386 27572667
25. Golden RJ An Argonaute phosphorylation cycle promotes microRNA-mediated silencing Nature 2017 542 197 202 10.1038/nature21025 28114302
26. Treiber T A Compendium of RNA-Binding Proteins that Regulate MicroRNA Biogenesis Mol Cell 2017 66 270 284 e213 10.1016/j.molcel.2017.03.014 28431233
27. Zampetaki A Role of miR-195 in aortic aneurysmal disease Circ Res 2014 115 857 866 10.1161/CIRCRESAHA.115.304361 25201911
28. Ran FA Genome engineering using the CRISPR-Cas9 system Nat Protoc 2013 8 2281 2308 10.1038/nprot.2013.143 24157548
29. Sanjana NE Shalem O Zhang F Improved vectors and genome-wide libraries for CRISPR screening Nat Methods 2014 11 783 784 10.1038/nmeth.3047 25075903
30. Shalem O Genome-scale CRISPR-Cas9 knockout screening in human cells Science 2014 343 84 87 10.1126/science.1247005 24336571
31. Zampetaki, A. et al . Histone deacetylase 3 is critical in endothelial survival and atherosclerosis development in response to disturbed flow. Circulation 121 , 132–142.
32. Abrahimi P Efficient gene disruption in cultured primary human endothelial cells by CRISPR/Cas9 Circ Res 2015 117 121 128 10.1161/CIRCRESAHA.117.306290 25940550
33. Lin S Staahl BT Alla RK Doudna JA Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery eLife 2014 3 25497837
34. Schumann K Generation of knock-in primary human T cells using Cas9 ribonucleoproteins Proc Natl Acad Sci USA 2015 112 10437 10442 10.1073/pnas.1512503112 26216948
35. Zampetaki A Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes Circ Res 2010 107 810 817 10.1161/CIRCRESAHA.110.226357 20651284
36. Ounzain S CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis J Mol Cell Cardiol 2015 89 98 112 10.1016/j.yjmcc.2015.09.016 26423156
37. Dawson WK Fujiwara K Kawai G Prediction of RNA pseudoknots using heuristic modeling with mapping and sequential folding PloS One 2007 2 10.1371/journal.pone.0000905 17878940
38. Popenda M Automated 3D structure composition for large RNAs Nucleic Acids Res 2012 40 10.1093/nar/gks339 22539264
39. Porrello ER MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes Circ Res 2011 109 670 679 10.1161/CIRCRESAHA.111.248880 21778430
40. Chaulk SG Xu Z Glover MJ Fahlman RP MicroRNA miR-92a-1 biogenesis and mRNA targeting is modulated by a tertiary contact within the miR-17~92 microRNA cluster Nucleic acids Res 2014 42 5234 5244 10.1093/nar/gku133 24520115
41. Cordes KR miR-145 and miR-143 regulate smooth muscle cell fate and plasticity Nature 2009 460 705 710 19578358
42. Boettger T Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster J Clin Invest 2009 119 2634 2647 10.1172/JCI38864 19690389
43. Xin M MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury Genes Dev 2009 23 2166 2178 10.1101/gad.1842409 19720868
44. Mogilyansky E Rigoutsos I The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease Cell Death Differ 2013 20 1603 1614 10.1038/cdd.2013.125 24212931
45. Tanzer A Stadler PF Molecular evolution of a microRNA cluster J Mol Biol 2004 339 327 335 10.1016/j.jmb.2004.03.065 15136036
46. Farh KK The widespread impact of mammalian MicroRNAs on mRNA repression and evolution Science 2005 310 1817 1821 10.1126/science.1121158 16308420
47. Nguyen TA Functional Anatomy of the Human Microprocessor Cell 2015 161 1374 1387 10.1016/j.cell.2015.05.010 26027739
48. Auyeung VC Ulitsky I McGeary SE Bartel DP Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing Cell 2013 152 844 858 10.1016/j.cell.2013.01.031 23415231
49. Fang W Bartel DP The Menu of Features that Define Primary MicroRNAs and Enable De Novo Design of MicroRNA Genes Mol Cell 2015 60 131 145 10.1016/j.molcel.2015.08.015 26412306
50. Roden C Novel determinants of mammalian primary microRNA processing revealed by systematic evaluation of hairpin-containing transcripts and human genetic variation Genome Res 2017 27 374 384 10.1101/gr.208900.116 28087842
51. Kwon SC Structure of Human DROSHA Cell 2016 164 81 90 10.1016/j.cell.2015.12.019 26748718
52. Ha M Kim VN Regulation of microRNA biogenesis Nat Rev Mol Cell Biol 2014 15 509 524 10.1038/nrm3838 25027649
53. Michlewski G Guil S Semple CA Caceres JF Posttranscriptional regulation of miRNAs harboring conserved terminal loops Mol Cell 2008 32 383 393 10.1016/j.molcel.2008.10.013 18995836
54. Chakraborty S Mehtab S Patwardhan A Krishnan Y Pri-miR-17-92a transcript folds into a tertiary structure and autoregulates its processing RNA 2012 18 1014 1028 10.1261/rna.031039.111 22450760
55. Elia L The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease Cell Death Differ 2009 16 1590 1598 10.1038/cdd.2009.153 19816508
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.