$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

CO 2 -Selective Nanoporous Metal-Organic Framework Microcantilevers 원문보기

Scientific reports, v.5, 2015년, pp.10674 -   

Yim, Changyong (Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk , Republic of Korea) ,  Lee, Moonchan (Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk , Republic of Korea) ,  Yun, Minhyuk (Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk , Republic of Korea) ,  Kim, Gook-Hee (Clean Coal Chemicals Research Project, Research Institute of Industrial Science and Technology (RIST), Pohang, Gyeongbuk , Republic of Korea) ,  Kim, Kyong Tae (Clean Coal Chemicals Research Project, Research Institute of Industrial Science and Technology (RIST), Pohang, Gyeongbuk , Republic of Korea) ,  Jeon, Sangmin (Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk , Republic of Korea

Abstract AI-Helper 아이콘AI-Helper

Nanoporous anodic aluminum oxide (AAO) microcantilevers are fabricated and MIL-53 (Al) metal-organic framework (MOF) layers are directly synthesized on each cantilever surface by using the aluminum oxide as the metal ion source. Exposure of the MIL53-AAO cantilevers to various concentrations of CO2,...

참고문헌 (28)

  1. Yoon M. , Srirambalaji R. & Kim K. Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis . Chem. Rev . 112 , 1196 – 1231 ( 2012 ). 22084838 

  2. Li J.-R. , Sculley J. & Zhou H.-C. Metal–organic frameworks for separations . Chem. Rev . 112 , 869 – 932 ( 2012 ). 21978134 

  3. Sumida K. et al. Carbon dioxide capture in metal–organic frameworks . Chem. Rev . 112 , 724 – 781 ( 2012 ). 22204561 

  4. Suh M. P. , Park H. J. , Prasad T. K. & Lim D.-W. Hydrogen storage in metal–organic frameworks . Chem. Rev . 112 , 782 – 835 ( 2012 ). 22191516 

  5. Kitagawa S. & Matsuda R. Chemistry of coordination space of porous coordination polymers . Coord. Chem. Rev . 251 , 2490 – 2509 ( 2007 ). 

  6. Kreno L. E. et al. Metal–organic framework materials as chemical sensors . Chem. Rev . 112 , 1105 – 1125 ( 2012 ). 22070233 

  7. Allendorf M. D. et al. Stress-induced chemical detection using flexible metal−organic frameworks . J. Am. Chem. Soc . 130 , 14404 – 14405 ( 2008 ). 18841964 

  8. Venkatasubramanian A. et al. MOF @ MEMS: Design optimization for high sensitivity chemical detection . Sens. Actuators, B 168 , 256 – 262 ( 2012 ). 

  9. Biemmi E. , Darga A. , Stock N. & Bein T. Direct growth of Cu 3 (BTC) 2 (H2O) 3 ·xH2O thin films on modified QCM-gold electrodes – Water sorption isotherms . Microporous Mesoporous Mater . 114 , 380 – 386 ( 2008 ). 

  10. Uehara H. et al. Porous coordination polymer hybrid device with quartz oscillator: effect of crystal size on Sorption kinetics . J. Am. Chem. Soc . 133 , 11932 – 11935 ( 2011 ). 21732690 

  11. Wannapaiboon S. , Tu M. & Fischer R. A. Liquid phase heteroepitaxial growth of moisture-tolerant MOF-5 isotype thin films and assessment of the sorption properties by quartz crystal microbalance . Adv. Funct. Mater . 24 , 2696 – 2705 ( 2013 ). 

  12. Liu B. , Tu M. , Zacher D. & Fischer R. A. Multi variant surface mounted metal-organic frameworks . Adv. Funct. Mater . 23 , 3790 – 3798 ( 2013 ). 

  13. Hwang Y. , Sohn H. , Phan A. , Yaghi O. M . & Candler R. N. Dielectrophoresis-assembled zeolitic imidazolate framework nanoparticle-coupled resonators for highly sensitive and selective gas detection . Nano Lett . 13 , 5271 – 5276 ( 2013 ). 24099583 

  14. Hwang Y. , Phan A. , Galatsis K. , Yaghi O. M. & Candler R. N. Zeolitic imidazolate framework-coupled resonators for enhanced gas detection . J. Micromech. Microeng . 23 , 125027 ( 2013 ). 

  15. Falcaro P. et al. MOF positioning technology and device fabrication . Chem. Soc. Rev . 43 , 5513 – 5560 ( 2014 ). 24802634 

  16. Reboul J. et al. Mesoscopic architectures of porous coordination polymers fabricated by pseudomorphic replication . Nat. Mater . 11 , 717 – 723 ( 2012 ). 22728321 

  17. Stassen I. et al. Solvent-free synthesis of supported ZIF-8 films and patterns through transformation of deposited zinc oxide precursors . CrystEngComm 15 , 9308 ( 2013 ). 

  18. Lee P.-S. et al. Microcantilevers with nanochannels . Adv. Mater . 20 , 1732 – 1737 ( 2008 ). 

  19. Lee D. , Shin N. , Lee K.-H. & Jeon S. Microcantilevers with nanowells as moisture sensors . Sens. Actuators, B 137 , 561 – 565 ( 2009 ). 

  20. Lee M. et al. Evaporation of water droplets from hydrophobic and hydrophilic nanoporous microcantilevers . Appl. Phys. Lett . 98 , 013107 ( 2011 ). 

  21. Meilikhov M. , Yusenko K. & Fischer R. A. The adsorbate structure of ferrocene inside [Al(OH)(bdc)]x (MIL-53): a powder X-ray diffraction study . Dalton Trans . 4 , 600 – 602 ( 2009 ). 19378551 

  22. Yi J. W. , Shih W. Y. & Shih W.-H. Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers . J. Appl. Phys . 91 , 1680 – 1686 ( 2002 ). 

  23. Rallapalli P. et al. Sorption studies of CO2, CH4, N2, CO, O2 and Ar on nanoporous aluminum terephthalate [MIL-53(Al)] . J. Porous Mater . 18 , 205 – 210 ( 2010 ). 

  24. Loiseau T. et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration . Chem. Eur. J . 10 , 1373 – 1382 ( 2004 ). 15034882 

  25. Jung N. , Seo H. , Lee D. , Ryu C. Y. & Jeon S. Nanomechanical thermal analysis of the glass transition of polystyrene using silicon cantilevers . Macromolecules 41 , 6873 – 6875 ( 2008 ). 

  26. Jung N. & Jeon S. Nanomechanical thermal analysis with silicon cantilevers of the mechanical properties of poly(vinyl acetate) near the glass transition temperature . Macromolecules 41 , 9819 – 9822 ( 2008 ). 

  27. Yun M. , Jung N. , Yim C. & Jeon S. Nanomechanical thermal analysis of the effects of physical aging on glass transitions in PS/PMMA blend and PS-PMMA diblock copolymers . Polymer 52 , 4136 – 4140 ( 2011 ). 

  28. Yun M. et al. Nanomechanical thermal analysis of photosensitive polymers . Macromolecules 44 , 9661 – 9665 ( 2011 ). 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로