$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

High resolution depth distribution of Bacteria , Archaea , methanotrophs, and methanogens in the bulk and rhizosphere soils of a flooded rice paddy 원문보기

Frontiers in microbiology, v.6, 2015년, pp.639 -   

Lee, Hyo Jung (Department of Life Science, Chung-Ang University Seoul, South Korea) ,  Jeong, Sang Eun (Department of Life Science, Chung-Ang University Seoul, South Korea) ,  Kim, Pil Joo (Division of Applied Life Science, Gyeongsang National University Jinju, South Korea) ,  Madsen, Eugene L. (Department of Microbiology, Cornell University Ithaca, NY, USA) ,  Jeon, Che Ok (Department of Life Science, Chung-Ang University Seoul, South Korea)

Abstract AI-Helper 아이콘AI-Helper

The communities and abundances of methanotrophs and methanogens, along with the oxygen, methane, and total organic carbon (TOC) concentrations, were investigated along a depth gradient in a flooded rice paddy. Broad patterns in vertical profiles of oxygen, methane, TOC, and microbial abundances were...

주제어

참고문헌 (68)

  1. Biddle J. F. Cardman Z. Mendlovitz H. Albert D. B. Lloyd K. G. Boetius A. . ( 2012 ). Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments . ISME J . 6 , 1018 – 1031 . 10.1038/ismej.2011.164 22094346 

  2. Blossfeld S. Gansert D. Thiele B. Kuhn A. J. Lösch R. ( 2011 ). The dynamics of oxygen concentration, pH value, and organic acids in the rhizosphere of Juncus spp . Soil Biol. Biochem . 43 , 1186 – 1197 . 10.1016/j.soilbio.2011.02.007 

  3. Bräuer S. Cadillo-Quiroz H. Yashiro E. Yavitt J. B. Zinder S. H. ( 2006 ). Isolation of a novel acidiphilic methanogen from an acidic peat bog . Nature 442 , 192 – 194 . 10.1038/nature04810 16699521 

  4. Breidenbach B. Conrad R. ( 2015 ). Seasonal dynamics of bacterial and archaeal methanogenic communities in flooded rice fields and effect of drainage . Front. Microbiol . 5 : 752 . 10.3389/fmicb.2014.00752 25620960 

  5. Bridgham S. D. Cadillo-Quiroz H. Keller J. K. Zhuang Q. ( 2013 ). Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales . Glob. Change Biol . 19 , 1325 – 1346 . 10.1111/gcb.12131 23505021 

  6. Chao A. ( 1987 ). Estimating the population size for capture-recapture data with unequal catchability . Biometrics 43 , 783 – 791 . 10.2307/2531532 3427163 

  7. Cole J. R. Wang Q. Cardenas E. Fish J. Chai B. Farris R. J. . ( 2009 ). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis . Nucleic Acids Res . 37 , D141 – D145 . 10.1093/nar/gkn879 19004872 

  8. Conrad R. ( 2002 ). Control of microbial methane production in wetland rice fields . Nutr. Cycl. Agroecosyst . 64 , 59 – 69 . 10.1023/A:1021178713988 

  9. Conrad R. ( 2007 ). Microbial ecology of methanogens and methanotrophs . Adv. Agron . 96 , 1 – 63 . 10.1016/s0065-2113(07)96005-8 

  10. Costa K. C. Leigh J. A. ( 2014 ). Metabolic versatility in methanogens . Curr. Opin. Biotechnol . 29 , 70 – 75 . 10.1016/j.copbio.2014.02.012 24662145 

  11. Denman S. E. McSweeney C. S. ( 2006 ). Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen . FEMS Microbiol. Ecol . 58 , 572 – 582 . 10.1111/j.1574-6941.2006.00190.x 17117998 

  12. Edgar R. C. Haas B. J. Clemente J. C. Quince C. Knight R. ( 2011 ). UCHIME improves sensitivity and speed of chimera detection . Bioinformatics 21 , 494 – 504 . 10.1093/bioinformatics/btr381 21700674 

  13. Eller G. Krüger M. Frenzel P. ( 2005 ). Comparing field and microcosm experiments: a case study on methano- and methylo-trophic bacteria in paddy soil . FEMS Microbiol. Ecol . 51 , 279 – 291 . 10.1016/j.femsec.2004.09.007 16329876 

  14. Ettwig K. F. Butler M. K. Le Paslier D. Pelletier E. Mangenot S. Kuypers M. M. . ( 2010 ). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria . Nature 464 , 543 – 548 . 10.1038/nature08883 20336137 

  15. Felsenstein J. ( 2002 ). PHYLIP (Phylogeny Inference Package), Version 3.6a . Seattle, WA : Department of Genetics, University of Washington . 

  16. Gilbert B. Frenzel P. ( 1998 ). Rice roots and CH 4 oxidation: the activity of bacteria, their distribution and the microenvironment . Soil Biol. Biochem . 14 , 1903 – 1916 . 10.1016/S0038-0717(98)00061-3 

  17. Groot T. T. van Bodegom P. M. Harren F. J. M. Meijer H. A. J. ( 2003 ). Quantification of methane oxidation in the rice rhizosphere using 13 C-labelled methane . Biogeochemistry 64 , 355 – 372 . 10.1023/A:1024921714852 

  18. Gutierrez J. Atulba S. L. Kim G. Kim P. J. ( 2014 ). Importance of rice root oxidation potential as a regulator of CH 4 production under waterlogged conditions . Biol. Fertil. Soils 50 , 861 – 868 . 10.1007/s00374-014-0904-0 

  19. Haroon M. F. Hu S. Shi Y. Imelfort M. Keller J. Hugenholtz P. . ( 2013 ). Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage . Nature 500 , 567 – 570 . 10.1038/nature12375 23892779 

  20. Henckel T. Roslev P. Conrad R. ( 2000 ). Effects of O 2 and CH 4 on presence and activity of the indigenous methanotrophic community in rice field soil . Environ. Microbiol . 2 , 666 – 679 . 10.1046/j.1462-2920.2000.00149.x 11214799 

  21. Herman D. Roberts D. ( 2006 ). The influence of structural components of alkyl esters on their anaerobic biodegradation in marine sediment . Biodegradation 17 , 457 – 463 . 10.1007/s10532-005-9016-8 16477357 

  22. IPCC. ( 2007 ). Climate change 2007: the physical science basis, in Working Group I Contribution to the IPCC Fourth Assessment Report . Cambridge; New York : Cambridge University Press . 

  23. Jung J. Y. Lee S. H. Kim J. M. Park M. S. Bae J. W. Hahn Y. . ( 2011 ). Metagenomic analysis of kimchi, a traditional Korean fermented food . Appl. Environ. Microbiol . 77 , 2264 – 2274 . 10.1128/AEM.02157-10 21317261 

  24. Kerdchoechuen O. ( 2005 ). Methane emission in four rice varieties as related to sugars and organic acids of roots and root exudates and biomass yield . Agric. Ecosyst. Environ . 108 , 155 – 163 . 10.1016/j.agee.2005.01.004 

  25. Kimura M. Murase J. Lu Y. ( 2004 ). Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO 2 and CH 4 ) . Soil Biol. Biochem . 36 , 1399 – 1416 . 10.1016/j.soilbio.2004.03.006 

  26. Knief C. Dunfield P. F. ( 2005 ). Response and adaptation of different methanotrophic bacteria to low methane mixing ratios . Environ. Microbiol . 7 , 1307 – 1317 . 10.1111/j.1462-2920.2005.00814.x 16104854 

  27. Krause S. Lüke C. Frenzel P. ( 2010 ). Succession of methanotrophs in oxygen-methane counter-gradients of flooded rice paddies . ISME J . 4 , 1603 – 1607 . 10.1038/ismej.2010.82 20574459 

  28. Kumaraswamy S. Ramakrishnan B. Satpathy S. N. Rath A. K. Misra S. Rao V. R. ( 1997 ). Spatial distribution of methane-oxidizing activity in a flooded rice soil . Plant Soil 191 , 241 – 248 . 10.1023/A:1004274302326 

  29. Lee H. J. Jung J. Y. Oh Y. K. Lee S. S. Madsen E. L. Jeon C. O. ( 2012 ). Comparative survey of rumen microbial communities and metabolites across one caprine and three bovine groups, using bar-coded pyrosequencing and 1 H nuclear magnetic resonance spectroscopy . Appl. Environ. Microbiol . 78 , 5983 – 5993 . 10.1128/AEM.00104-12 22706048 

  30. Lee H. J. Kim S. Y. Kim P. S. Madsen E. L. Jeon C. O. ( 2014 ). Methane emission and dynamics of methanotrophic and methanogenic communities in a flooded rice field ecosystem . FEMS Microbiol. Ecol . 88 , 195 – 212 . 10.1111/1574-6941.12282 24410836 

  31. Liesack W. Schnell S. Revsbech N. P. ( 2000 ). Microbiology of flooded rice paddies . FEMS Microbiol. Rev . 24 , 624 – 645 . 10.1111/j.1574-6976.2000.tb00563.x 11077155 

  32. Liu D. Ishikawa H. Nishida M. Tsuchiya K. Takahashi T. Kimura M. . ( 2015 ). Effect of paddy-upland rotation on methanogenic archaeal community structure in paddy field soil . Microb. Ecol . 69 , 160 – 168 . 10.1007/s00248-014-0477-3 25113614 

  33. Lozupone C. Knight R. ( 2005 ). UniFrac: a new phylogenetic method for comparing microbial communities . Appl. Environ. Microbiol . 71 , 8228 – 8235 . 10.1128/AEM.71.12.8228-8235.2005 16332807 

  34. Lüdemann H. Arth I. Liesack W. ( 2000 ). Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores . Appl. Environ. Microbiol . 66 , 754 – 762 . 10.1128/AEM.66.2.754-762.2000 10653747 

  35. Lüke C. Frenzel P. ( 2011 ). Potential of pmoA amplicon pyrosequencing for methanotroph diversity studies . Appl. Environ. Microbiol . 77 , 6305 – 6309 . 10.1128/AEM.05355-11 21764977 

  36. Lüke C. Frenzel P. Ho A. Fiantis D. Schad P. Schneider B. . ( 2014 ). Macroecology of methane-oxidizing bacteria: the β-diversity of pmoA genotypes in tropical and subtropical rice paddies . Environ. Microbiol . 16 , 72 – 83 . 10.1111/1462-2920.12190 24914433 

  37. Lu Y. Conrad R. ( 2005 ). In situ stable isotope probing of methanogenic archaea in the rice rhizosphere . Science 309 , 1088 – 1090 . 10.1126/science.1113435 16099988 

  38. Lu Y. Wassmann R. Neue H. U. Huang C. Y. ( 2000 ). Dynamics of dissolved organic carbon and methane emissions in a flooded rice soil . Soil Sci. Soc. Am. J . 6 , 2011 – 2017 . 10.2136/sssaj2000.6462011x 

  39. Ma K. Conrad R. Lu Y. ( 2012 ). Responses of methanogen mcrA genes and their transcripts to an alternate dry/wet cycle of paddy field soil . Appl. Environ. Microbiol . 78 , 445 – 454 . 10.1128/AEM.06934-11 22101043 

  40. Ma K. Conrad R. Lu Y. ( 2013 ). Dry/wet cycles change the activity and population dynamics of methanotrophs in rice field soil . Appl. Environ. Microbiol . 79 , 4932 – 4939 . 10.1128/AEM.00850-13 23770899 

  41. Ma K. Lu Y. ( 2011 ). Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil . FEMS Microbiol. Ecol . 75 , 446 – 456 . 10.1111/j.1574-6941.2010.01018.x 21198683 

  42. Ma K. Qiu Q. Lu Y. ( 2010 ). Microbial mechanism for rice variety control on methane emission from rice field soil . Glob. Change Biol . 16 , 3085 – 3095 . 10.1111/j.1365-2486.2009.02145.x 

  43. MaCalady J. L. McMillan A. M. S. Dickens A. F. Tyler S. C. Scow K. M. ( 2002 ). Population dynamics of type I and II methanotrophic bacteria in rice soil . Environ. Microbiol . 4 , 148 – 157 . 10.1046/j.1462-2920.2002.00278.x 12000315 

  44. Mills H. J. Hodges C. Wilson K. MacDonald I. R. Sobecky P. A. ( 2003 ). Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico . FEMS Microbiol. Ecol . 46 , 39 – 52 . 10.1016/S0168-6496(03)00191-0 19719581 

  45. Mills H. J. Martinez R. J. Story S. Sobecky P. A. ( 2005 ). Characterization of microbial community structure in Gulf of Mexico gas hydrates: comparative analysis of DNA- and RNA-derived clone libraries . Appl. Environ. Microbiol . 71 , 3235 – 3247 . 10.1128/AEM.71.6.3235-3247.2005 15933026 

  46. Noll M. Matthies D. Frenzel P. Derakshani M. Liesack W. ( 2005 ). Succession of bacterial community structure and diversity in a paddy soil oxygen gradient . Environ. Microbiol . 7 , 382 – 395 . 10.1111/j.1462-2920.2005.00700.x 15683399 

  47. Op den Camp H. J. Islam T. Stott M. B. Harhangi H. R. Hynes A. Schouten S. . ( 2009 ). Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia . Environ. Microbiol. Rep . 1 , 293 – 306 . 10.1111/j.1758-2229.2009.00022.x 23765882 

  48. Pruesse E. Quast C. Knittel K. Fuchs B. M. Ludwig W. Peplies J. . ( 2007 ). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB . Nucleic Acids Res . 35 , 7188 – 7196 . 10.1093/nar/gkm864 17947321 

  49. Pump J. Pratscher J. Conrad R. ( 2015 ). Colonization of rice roots with methanogenic archaea controls photosynthesis-derived CH 4 emission . Environ. Microbiol . [Epub ahead of print]. 10.1111/1462-2920.12675 25367104 

  50. Reim A. Lüke C. Krause S. Pratscher J. Frenzel P. ( 2012 ). One millimeter makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic-anoxic interface in a flooded paddy soil . ISME J . 6 , 2128 – 2139 . 10.1038/ismej.2012.57 22695859 

  51. Revsbech N. P. Pedersen O. Reichardt W. Briones A. ( 1999 ). Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions . Biol. Fertil. Soils 29 , 379 – 385 . 10.1007/s003740050568 

  52. Roesch L. F. W. Fulthorpe R. R. Riva A. Casella G. Hadwin A. K. M. Kent A. D. . ( 2007 ). Pyrosequencing enumerates and contrasts soil microbial diversity . ISME J . 1 , 283 – 290 . 10.1038/ismej.2007.53 18043639 

  53. Sakai S. Imachi H. Sekiguchi Y. Tseng I. C. Ohashi A. Harada H. . ( 2009 ). Cultivation of methanogens under low-hydrogen conditions by using the coculture method . Appl. Environ. Microbiol . 75 , 4892 – 4896 . 10.1128/AEM.02835-08 19465530 

  54. Schloss P. D. Westcott S. L. Ryabin T. Hall J. R. Hartmann M. Hollister E. B. . ( 2009 ). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities . Appl. Environ. Microbiol . 75 , 7537 – 7541 . 10.1128/AEM.01541-09 19801464 

  55. Semrau J. D. DiSpirito A. A. Yoon S. ( 2010 ). Methanotrophs and copper . FEMS Microbiol. Rev . 34 , 496 – 531 . 10.1111/j.1574-6976.2010.00212.x 20236329 

  56. Shannon C. E. Weaver W. ( 1963 ). The Mathematical Theory of Communication . Urbana, IL : University of Illinois Press . 

  57. Shen L. D. Liu S. Huang Q. Lian X. He Z. F. Geng S. ( 2014 ). Evidence for the cooccurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field . Appl. Environ. Microbiol . 80 , 7611 – 7619 . 10.1128/AEM.02379-14 25261523 

  58. Shimane Y. Hatada Y. Minegishi H. Echigo A. Nagaoka S. Miyazaki M. . ( 2011 ). Salarchaeum japonicum gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea isolated from commercial salt . Int. J. Syst. Evol. Microbiol . 61 , 2266 – 2270 . 10.1099/ijs.0.025064-0 20952548 

  59. Shrestha M. Abraham W. R. Shrestha P. M. Noll M. Conrad R. ( 2008 ). Activity and composition of methanotrophic bacterial communities in planted rice soil studied by flux measurements, analyses of pmoA gene and stable isotope probing of phospholipid fatty acids . Environ. Microbiol . 10 , 400 – 412 . 10.1111/j.1462-2920.2007.01462.x 18177369 

  60. Shrestha M. Shrestha P. M. Frenzel P. Conrad R. ( 2010 ). Effect of nitrogen fertilization on methane oxidation, abundance, community structure, and gene expression of methanotrophs in the rice rhizosphere . ISME J . 4 , 1545 – 1556 . 10.1038/ismej.2010.89 20596069 

  61. Takai K. Horikoshi K. ( 2000 ). Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes . Appl. Environ. Microbiol . 66 , 5066 – 5072 . 10.1128/AEM.66.11.5066-5072.2000 11055964 

  62. Wainø M. Tindall B. J. Ingvorsen K. ( 2000 ). Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah . Int. J. Syst. Evol. Microbiol . 50 , 183 – 190 . 10.1099/00207713-50-1-183 10826803 

  63. Watanabe T. Wang G. Taki K. Ohashi Y. Kimura M. Asakawa S. ( 2010 ). Vertical changes in bacterial and archaeal communities with soil depth in Japanese paddy fields . Soil Sci. Plant Nutr . 56 , 705 – 715 . 10.1111/j.1747-0765.2010.00511.x 

  64. Wu L. Ma K. Lu Y. ( 2009 ). Rice roots select for type I methanotrophs in rice field soil . Syst. Appl. Microbiol . 32 , 421 – 428 . 10.1016/j.syapm.2009.05.001 19481894 

  65. Yuan Q. Pump J. Conrad R. ( 2012 ). Partitioning of CH 4 and CO 2 production originating from rice straw, soil and root organic carbon in rice microcosms . PLoS ONE 7 : e49073 . 10.1371/journal.pone.0049073 23162678 

  66. Yuan Y. Conrad R. Lu Y. ( 2009 ). Responses of methanogenic archaeal community to oxygen exposure in rice field soil . Environ. Microbiol. Rep . 1 , 347 – 354 . 10.1111/j.1758-2229.2009.00036.x 23765886 

  67. Yuan Y. Conrad R. Lu Y. ( 2011 ). Transcriptional response of methanogen mcrA genes to oxygen exposure of rice field soil . Environ. Microbiol. Rep . 3 , 320 – 328 . 10.1111/j.1758-2229.2010.00228.x 23761278 

  68. Zhou J. Wu L. Deng Y. Zhi X. Jian Y. H. Tu Q. . ( 2011 ). Reproducibility and quantitation of amplicon sequencing-based detection . ISME J . 5 , 1303 – 1313 . 10.1038/ismej.2011.11 21346791 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로