$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Graphene nanoplatelets nanofluids thermal and hydrodynamic performance on integral fin heat sink

International journal of heat and mass transfer, v.107, 2017년, pp.995 - 1001  

Arshad, Waqas (Corresponding author.) ,  Ali, Hafiz Muhammad

Abstract AI-Helper 아이콘AI-Helper

Abstract In this work, graphene nanoplatelets nanofluids (GNPs) thermal and hydrodynamic performance is observed experimentally in comparison with distilled water on integral fin heat sink. Water based GNPs nanofluids is used with 10% weight concentration. Experimentation is performed in laminar ra...

Keyword

참고문헌 (32)

  1. J. Electron. Packag. Xie 129 247 2007 10.1115/1.2753887 Numerical study of turbulent heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink 

  2. IEEE Electron Device Lett. Tuckerman 2 5 126 1981 10.1109/EDL.1981.25367 High-performance heat sinking for VLSI 

  3. S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in: Conference: 1995 International Mechanical Engineering Congress and Exhibition, San Francisco, CA, United states, 12-17 November, ASME, San Francisco, 1995, pp. 99-105. 

  4. S.G. Kandlikar, H.R. Upadhye, Optimization of microchannel geometry for direct chip cooling using single-phase transfer, Proceedings of Microchannels and Minichannels-2004, ASME, NY, 2004, pp. 679-614. 

  5. 10.1115/ICMM2005-75086 S.G. Kandlikar, High flux heat removal with microchannels - a roadmap of challenges and opportunities, in: Proceedings of Microchannels and Minichannels-2005, ASME, Toronto, 2005, pp. 1-10. 

  6. 10.1115/ICMM2004-2321 S.G. Kandlikar, W.J. Grande, Evaluation of single-phase flow in microchannels for high flux CHIP cooling - thermohydraulic performance enhancement and fabrication technology, Proceedings of Microchannels and Minichannels-2004, ASME, NY, 2004, pp. 67-76. 

  7. Int. J. Heat Mass Transfer Sohel 74 164 2014 10.1016/j.ijheatmasstransfer.2014.03.010 An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3-H2O nanofluid 

  8. Int. Commun. Heat Mass Transfer Naphon 37 822 2010 10.1016/j.icheatmasstransfer.2010.05.004 Investigation on the jet liquid impingement heat transfer for the central processing unit of personal computers 

  9. Exp. Thermal Fluid Sci. Singh 42 174 2012 10.1016/j.expthermflusci.2012.05.004 Experimental and numerical investigation into the hydrodynamics of nanofluids in microchannels 

  10. Int. Commun. Heat Mass Transfer Anoop 39 1325 2012 10.1016/j.icheatmasstransfer.2012.07.023 Experimental study of forced convective heat transfer of nanofluids in a microchannel 

  11. Exp. Thermal Fluid Sci. Nazari 57 371 2014 10.1016/j.expthermflusci.2014.06.003 Comparing the thermal performance of water, ethylene glycol, alumina and CNT nanofluids in CPU cooling: experimental study 

  12. Appl. Therm. Eng. Ho 30 96 2010 10.1016/j.applthermaleng.2009.07.003 An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid 

  13. Int. J. Heat Mass Transfer Tullius 60 523 2013 10.1016/j.ijheatmasstransfer.2013.01.035 Effect of Al2O3/H2O nanofluid on MWNT circular fin structures in a minichannel 

  14. Int. J. Heat Mass Transfer Vanapalli 64 689 2013 10.1016/j.ijheatmasstransfer.2013.05.033 Assessment of thermal conductivity, viscosity and specific heat of nanofluids in single phase laminar internal forced convection 

  15. Int. J. Heat Mass Transfer Ray 71 732 2014 10.1016/j.ijheatmasstransfer.2013.12.072 Experimental and numerical investigations of nanofluids performance in a compact minichannel plate heat exchanger 

  16. Appl. Therm. Eng. Ferrouillat 51 839 2013 10.1016/j.applthermaleng.2012.10.020 Influence of nanoparticle shape factor on convective heat transfer and energetic performance of water-based SiO2 and ZnO nanofluids 

  17. Int. J. Therm. Sci. Chein 46 57 2007 10.1016/j.ijthermalsci.2006.03.009 Experimental microchannel heat sink performance studies using nanofluids 

  18. Appl. Therm. Eng. Chein 25 3104 2005 10.1016/j.applthermaleng.2005.03.008 Analysis of microchannel heat sink performance using nanofluids 

  19. Appl. Therm. Eng. Rafati 45-46 9 2012 10.1016/j.applthermaleng.2012.03.028 Application of nanofluids in computer cooling systems (heat transfer performance of nanofluids) 

  20. Int. Commun. Heat Mass Transfer Naphon 36 39 2009 10.1016/j.icheatmasstransfer.2008.09.001 Study on the convective heat transfer and pressure drop in the micro-channel heat sink 

  21. Energy Convers. Manage. Ali 106 793 2015 10.1016/j.enconman.2015.10.015 Thermal performance investigation of staggered and inline pin fin heat sinks using water based rutile and anatase TiO2 nanofluids 

  22. Int. J. Heat Mass Transfer Lee 50 452 2007 10.1016/j.ijheatmasstransfer.2006.08.001 Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels 

  23. Int. J. Heat Mass Transfer Ho 69 293 2014 10.1016/j.ijheatmasstransfer.2013.10.030 Correlations of heat transfer effectiveness in a minichannel heat sink with water-based suspensions of Al2O3 nanoparticles and/or MEPCM particles 

  24. Int. Commun. Heat Mass Transfer Naphon 36 834 2009 10.1016/j.icheatmasstransfer.2009.06.010 Numerical investigation on the heat transfer and flow in the mini-fin heat sink for CPU 

  25. Appl. Therm. Eng. Hasan 63 598 2014 10.1016/j.applthermaleng.2013.11.059 Investigation of flow and heat transfer characteristics in micro pin fin heat sink with nanofluid 

  26. Int. J. Heat Fluid Flow Tsai 28 1013 2007 10.1016/j.ijheatfluidflow.2007.01.007 Performance analysis of nanofluid-cooled microchannel heat sinks 

  27. Appl. Therm. Eng. Mital 50 429 2013 10.1016/j.applthermaleng.2012.07.040 Analytical analysis of heat transfer and pumping power of laminar nanofluid developing flow in microchannels 

  28. Int. J. Heat Mass Transfer Rea 52 2042 2009 10.1016/j.ijheatmasstransfer.2008.10.025 Laminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluids 

  29. Exp. Heat transfer Pak 11 151 1998 10.1080/08916159808946559 Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles 

  30. Int. J. Heat Mass Transfer Xuan 43 3701 2000 10.1016/S0017-9310(99)00369-5 Conceptions for heat transfer correlation of nanofluids 

  31. Int. J. Heat Fluid Corcione 32 65 2011 10.1016/j.ijheatfluidflow.2010.08.004 Rayleigh-Benard convection heat transfer in nanoparticle suspensions 

  32. Mech. Eng. Kline 75 3 1953 Describing uncertainties in single-sample experiments 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로