$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Graphene enhanced paraffin nanocomposite based hybrid cooling system for thermal management of electronics

Applied thermal engineering, v.163, 2019년, pp.114342 -   

Joseph, Mathew (Corresponding author.) ,  Sajith, V.

Abstract AI-Helper 아이콘AI-Helper

Abstract Hybrid cooling systems combining forced convection with passive phase change material (PCM) based heat sink is an ideal solution for long-term cooling of high power electronics. The effectiveness of composite PCM with graphene nanofillers on transient performance of a hybrid thermal contro...

Keyword

참고문헌 (63)

  1. J. Heat Transf. Krishnan 129 395 2007 10.1115/1.2430728 Analysis of solid-liquid phase change under pulsed heating 

  2. Int. J. Therm. Sci. Chintakrinda 50 1639 2011 10.1016/j.ijthermalsci.2011.04.005 A direct comparison of three different material enhancement methods on the transient thermal response of paraffin phase change material exposed to high heat fluxes 

  3. Appl. Therm. Eng. Baby 54 65 2013 10.1016/j.applthermaleng.2012.10.056 Thermal optimization of PCM based pin fin heat sinks: An experimental study 

  4. Energy Convers. Manag. Khan 115 132 2016 10.1016/j.enconman.2016.02.045 A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility 

  5. Int. J. Heat Mass Transf. Rehman 135 649 2019 10.1016/j.ijheatmasstransfer.2019.02.001 A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams 

  6. Exp. Therm Fluid Sci. Krishna 81 84 2017 10.1016/j.expthermflusci.2016.10.014 Heat pipe with nano enhanced-PCM for electronic cooling application 

  7. Appl. Energy Sharma 208 719 2017 10.1016/j.apenergy.2017.09.076 Nano-enhanced Phase Change Material for thermal management of BICPV 

  8. Appl. Therm. Eng. Sarı 27 1271 2007 10.1016/j.applthermaleng.2006.11.004 Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material 

  9. Sol. Energy Mater. Sol. Cells Cui 95 1208 2011 10.1016/j.solmat.2011.01.021 The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials 

  10. Energy Convers. Manag. Karaipekli 134 373 2017 10.1016/j.enconman.2016.12.053 Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes 

  11. Energy Li 55 752 2013 10.1016/j.energy.2013.04.010 Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes 

  12. Sol. Energy Mater. Sol. Cells Kim 93 136 2009 10.1016/j.solmat.2008.09.010 High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets 

  13. Carbon N. Y. Kalaitzidou 45 1446 2007 10.1016/j.carbon.2007.03.029 Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets 

  14. Sol. Energy Mater. Sol. Cells Xiang 95 1811 2011 10.1016/j.solmat.2011.01.048 Solar Energy Materials & Solar Cells Investigation of exfoliated graphite nanoplatelets (x GnP) in improving thermal conductivity of paraffin wax-based phase change material 

  15. J. Phys. Chem. C Yu 111 7565 2007 10.1021/jp071761s Graphite Nanoplatelet - Epoxy Composite Thermal Interface Materials 

  16. ACS Appl. Mater. Interfaces Warzoha 6 12868 2014 10.1021/am502819q Effect of graphene layer thickness and mechanical compliance on interfacial heat flow and thermal conduction in solid ? liquid phase change materials 

  17. Appl. Energy Fan 110 163 2013 10.1016/j.apenergy.2013.04.043 Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials 

  18. Carbon N. Y. Yu 53 277 2013 10.1016/j.carbon.2012.10.059 Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes 

  19. Appl. Therm. Eng. Harish 114 1240 2017 10.1016/j.applthermaleng.2016.10.109 Enhanced thermal conductivity of phase change nanocomposite in solid and liquid state with various carbon nano inclusions 

  20. Appl. Energy Li 242 695 2019 10.1016/j.apenergy.2019.03.085 Effect of different dimensional carbon materials on the properties and application of phase change materials: a review 

  21. Thermochim Acta Liu 647 15 2017 10.1016/j.tca.2016.11.010 Thermochimica Acta Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material 

  22. Carbon N. Y. Shi 51 365 2013 10.1016/j.carbon.2012.08.068 Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives 

  23. Int. J. Heat Mass Transf. Warzoha 79 314 2014 10.1016/j.ijheatmasstransfer.2014.08.009 Improved heat recovery from paraffin-based phase change materials due to the presence of percolating graphene networks 

  24. Appl. Therm. Eng. Mehrali 61 633 2013 10.1016/j.applthermaleng.2013.08.035 Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material 

  25. Appl. Therm. Eng. Amin 112 273 2017 10.1016/j.applthermaleng.2016.10.085 Thermal properties of beeswax/graphene phase change material as energy storage for building applications 

  26. Energy Convers. Manag. Fang 103 251 2015 10.1016/j.enconman.2015.06.062 Tunable thermal conduction character of graphite-nanosheets-enhanced composite phase change materials via cooling rate control 

  27. Int. J. Heat Mass Transf. Fan 79 94 2014 10.1016/j.ijheatmasstransfer.2014.08.001 Heat transfer during melting of graphene-based composite phase change materials heated from below 

  28. Phys. Lett. A Zabihi 380 3828 2016 10.1016/j.physleta.2016.09.028 Effect of functional groups on thermal conductivity of graphene/paraffin nanocomposite 

  29. Energy Convers. Manag. Li 75 482 2013 10.1016/j.enconman.2013.07.005 Aqueous preparation of polyethylene glycol/sulfonated graphene phase change composite with enhanced thermal performance 

  30. Energy Convers. Manag. Mehrali 67 275 2013 10.1016/j.enconman.2012.11.023 Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite 

  31. J. Phys. Chem. C Akhiani 119 22787 2015 10.1021/acs.jpcc.5b06089 One-step preparation of form-stable phase change material through self-assembly of fatty acid and graphene 

  32. Appl. Energy Mehrali 135 339 2014 10.1016/j.apenergy.2014.08.100 Preparation of nitrogen-doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage 

  33. Carbon N. Y. Qi 88 196 2015 10.1016/j.carbon.2015.03.009 Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage 

  34. Carbon N. Y. Yang 100 693 2016 10.1016/j.carbon.2016.01.063 Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage 

  35. Mater. Horiz. Yang 6 250 2019 10.1039/C8MH01219A High-performance composite phase change structural materials 

  36. J. Mater. Sci. Yang 53 2566 2018 10.1007/s10853-017-1693-2 Novel segregated-structure phase change materials composed of paraffin @ graphene microencapsules with high latent heat and thermal conductivity 

  37. RSC Adv. Lee 7 15644 2017 10.1039/C7RA00392G Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene 

  38. J. Mater. Chem. A Du 1 10592 2013 10.1039/c3ta12212c From graphite to graphene: Direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene 

  39. J. Phys. Chem. Lett. Bruna 2714-2721 2016 Liquid-phase exfoliation of graphite into single- and few-layer graphene with α - functionalized alkanes 

  40. Int. J. Therm. Sci. Shang 131 20 2018 10.1016/j.ijthermalsci.2018.05.019 International Journal of Thermal Sciences Non-monotonously tuning thermal conductivity of graphite-nanosheets/para ffi n composite by ultrasonic exfoliation 

  41. Renew. Sustain. Energy Rev. Kumar 59 550 2016 10.1016/j.rser.2015.12.238 Application of TCE-PCM based heat sinks for cooling of electronic components: a review 

  42. J. Heat Transfer Weinstein 130 1 2008 10.1115/1.2818764 The experimental exploration of embedding phase change materials with graphite nanofibers for the thermal management of electronics 

  43. Carbon N. Y. Shaikh 50 542 2011 10.1016/j.carbon.2011.09.011 A carbon nanotube-based composite for the thermal control of heat loads 

  44. Int. J. Heat Mass Transf. Sanusi 54 4429 2011 10.1016/j.ijheatmasstransfer.2011.04.046 Energy storage and solidification of paraffin phase change material embedded with graphite nanofibers 

  45. J. Heat Transfer Chintakrinda 134 071901 2012 10.1115/1.4006008 Quantification of the impact of embedded graphite nanofibers on the transient thermal response of paraffin phase change material exposed to high heat fluxes 

  46. Appl. Therm. Eng. Fan 75 532 2015 10.1016/j.applthermaleng.2014.10.050 Transient performance of a PCM-based heat sink with high aspect-ratio carbon nanofillers 

  47. Appl. Therm. Eng. Alimohammadi 111 271 2017 10.1016/j.applthermaleng.2016.09.028 Experimental investigation of the effects of using nano/phase change materials (NPCM) as coolant of electronic chipsets, under free and forced convection 

  48. IEEE Trans. Components, Packag Manuf. Technol. Sahoo 8 416 2018 10.1109/TCPMT.2017.2756919 Hybrid cooling system for electronics equipment during power surge operation 

  49. IEEE Trans. Components, Packag. Manuf. Technol. Saha 2 464 2012 10.1109/TCPMT.2011.2180021 Thermal management of electronics using PCM-based heat sink subjected to cyclic heat load 

  50. IEEE Trans. Components, Packag. Manuf. Technol. Stupar 2 102 2012 10.1109/TCPMT.2011.2168957 Optimization of phase change material heat sinks for low duty cycle high peak load power supplies 

  51. IEEE Trans. Device Mater. Reliab. Yoo 4 641 2004 10.1109/TDMR.2004.840854 Energy efficient thermal management of electronic components using solid - liquid phase change materials 

  52. Appl. Therm. Eng. Kozak 59 142 2013 10.1016/j.applthermaleng.2013.05.021 Experimental and numerical investigation of a hybrid PCM-air heat sink 

  53. J.R. Taylor, Introduction to Error Analysis 2ed.pdf, n.d. 

  54. Nat. Nanotechnol. Ferrari 8 235 2013 10.1038/nnano.2013.46 Raman spectroscopy as a versatile tool for studying the properties of graphene 

  55. AIP Adv. Gayathri 4 027116 1 2014 Synthesis of few layer graphene by direct exfoliation of graphite and a Raman spectroscopic study 

  56. J. Phys. Chem. C Yavari 115 8753 2011 10.1021/jp200838s Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives 

  57. Int. J. Heat Mass Transf. Zabalegui 78 1145 2014 10.1016/j.ijheatmasstransfer.2014.07.051 International Journal of Heat and Mass Transfer Nanofluid PCMs for thermal energy storage: latent heat reduction mechanisms and a numerical study of effective thermal storage performance 

  58. Nanoscale Li 9 10784 2017 10.1039/C7NR01695F Measurement of specific heat and thermal conductivity of supported and suspended graphene by a comprehensive Raman optothermal method 

  59. Appl. Phys. Lett. Nan 85 16 3549 2004 10.1063/1.1808874 Interface effect on thermal conductivity of carbon nanotube composites 

  60. Energy Convers. Manag. Wu 101 278 2015 10.1016/j.enconman.2015.05.050 Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management 

  61. Appl. Energy Li 106 25 2013 10.1016/j.apenergy.2013.01.031 A nano-graphite/paraffin phase change material with high thermal conductivity 

  62. J. Zhejiang Univ.-Sci. A (Appl. Phys. Eng.) Sebti 14 307 2013 10.1631/jzus.A1200208 Numerical study of the melting of nano-enhanced phase change material in a square cavity 

  63. Int. Commun. Heat Mass Transf. Khodadadi 34 534 2007 10.1016/j.icheatmasstransfer.2007.02.005 Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로