$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Supersonic flow over rounded contour bumps with vortex generators or passive longitudinal jets 원문보기

Experimental thermal and fluid science : ETF science, v.85, 2017년, pp.213 - 228  

Lo, K.H. ,  Kontis, K.

Abstract AI-Helper 아이콘AI-Helper

An experimental study has been conducted to investigate the flow characteristics over two rounded contour bumps. Vane-type vortex generators or longitudinal aligned passive by-pass jets were implemented in attempt to achieve wake flow control in rounded contour bumps. According to the results collec...

주제어

참고문헌 (40)

  1. Byun 2005 Structure of Three-Dimensional Separated Flow on Symmetric Bumps 

  2. AIAA J. Byun 42 4 754 2004 10.2514/1.1829 Study of vortical separation from three-dimensional symmetric bumps 

  3. Int. J. Heat Fluid Flow Yakeno 55 52 2015 10.1016/j.ijheatfluidflow.2015.07.014 Separation control based on turbulence transition around a two-dimensional hump at different Reynolds numbers 

  4. Iaccarino 389 2003 RANS Simulation of the Separated Flow Over a Bump with Active Control 

  5. Lo 2014 Experimental Studies on Contour Bumps and Cavities at Supersonic Speed 

  6. Exp. Therm. Fluid Sci. Lo 80 228 2017 10.1016/j.expthermflusci.2016.08.027 Flow characteristics of various three-dimensional rounded contour bumps in a Mach 1.3 freestream 

  7. Acta Astronaut. Lo 126 229 2016 10.1016/j.actaastro.2016.04.033 Control of flow separation on a contour bump by jets in a Mach 1.9 freestream: an experimental study 

  8. J. Visual. Lo 2016 Flow visualisation of a normal shock impinging over a rounded contour bump in a Mach 1.3 free-stream 

  9. AIAA J. Eastwood 50 12 2882 2012 10.2514/1.J051740 Toward designing with three-dimensional bumps for lift/drag improvement and buffet alleviation 

  10. 10.1007/978-3-540-74460-3_10 B. König, M. Pätzold, T. Lutz, E. Krämer, Shock control bumps on flexible and trimmed transport aircraft in Transonic Flow, in: New Results in Numerical and Experimental Fluid Mechanics VI, Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol. 96, 2007, pp. 80-87. 

  11. J. Aircraft König 46 2 675 2009 10.2514/1.41441 Numerical and experimental validation of three-dimensional shock control bumps 

  12. Proc. IMech E Part G J. Aerosp. Eng. Qin 222 5 619 2008 10.1243/09544100JAERO333 Three-dimensional contour bumps for transonic wing drag reduction 

  13. J. Aerosp. Sci. Technol. Wong 12 436 2008 10.1016/j.ast.2007.10.011 A combined experimental and numerical study of flow structures over three-dimensional shock control bumps 

  14. P.C. Simon, D.W. Brown, R.G. Huff, Performance of External-Compression Bump Inlet at Mach Numbers of 1.5 and 2.0, NACA Report, NACA-RM-E56L19, 1957. 

  15. Svensson 2013 A CFD Investigation of a Generic Bump and Its Application to a Diverterless Supersonic Inlet 

  16. Exp. Fluids Chen 56 11 1 2015 10.1007/s00348-015-2077-5 Passive jet control of flow around a circular cylinder 

  17. ASCE, J. Aerosp. Eng. Chen 2016 A passive jet flow control method for suppressing unsteady vortex shedding from a circular cylinder 

  18. Lu 2011 Proceedings of 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, United States, 4-7 January 2011 Review of micro vortex generators in high-speed flow 

  19. AIAA J. Herges 48 11 2529 2010 10.2514/1.J050313 Microramp flow control of normal shock/boundary-layer interactions 

  20. Prog. Aerosp. Sci. Lin 38 389 2002 10.1016/S0376-0421(02)00010-6 Review of research on low-profile vortex generators to control boundary layer separation 

  21. AIAA J. Babinsky 47 3 668 2009 10.2514/1.38022 Microramp control of supersonic oblique shock-wave/boundary-layer interactions 

  22. J. Aircraft Li 47 6 2086 2010 10.2514/1.C000318 Declining angle effects of the trailing edge of a microramp vortex generator 

  23. Flow Meas. Instrum. Zare-Behtash 2017 Pressure sensitive paint measurements at high Mach numbers 

  24. AIAA J. Kontis 44 12 2962 2006 10.2514/1.21018 Compressible vortex-ring interaction studies with a number of generic body configurations 

  25. Phys. Fluids Kontis 20 1 016104 2008 10.1063/1.2837172 Head-on collision of shock wave induced vortices with solid and perforated walls 

  26. Shock Waves Kontis 17 5 323 2008 10.1007/s00193-007-0114-x Effect of dimples on glancing shock wave turbulent boundary later interactions 

  27. Sensors Actuat. B: Chem. Yang 161 1 100 2012 10.1016/j.snb.2011.09.053 Application of AA-PSP to hypersonic flows: the double ramp model 

  28. Micromachines Saad 3 2 364 2012 10.3390/mi3020364 Micro-ramps for hypersonic flow control 

  29. Int. J. Heat Fluid Flow Yang 37 9 2012 10.1016/j.ijheatfluidflow.2012.05.004 Pressure-sensitive paint on a truncated cone in hypersonic flow at incidences 

  30. Int. J. Heat Fluid Flow Zare-Behtash 30 3 561 2009 10.1016/j.ijheatfluidflow.2009.02.022 Compressible vortex loops: effect of nozzle geometry 

  31. Int. J. Heat Fluid Flow Zare-Behtash 32 3 596 2011 10.1016/j.ijheatfluidflow.2011.02.013 Effect of primary jet geometry on ejector performance: a cold-flow investigation 

  32. Exp. Therm. Fluid Sci. Yang 40 50 2012 10.1016/j.expthermflusci.2012.01.032 Investigation of the double ramp in hypersonic flow using luminescent measurement systems 

  33. Exp. Therm. Fluid Sci. Ukai 52 59 2013 10.1016/j.expthermflusci.2013.08.022 Effectiveness of jet location on mixing characteristics inside a cavity in supersonic flow 

  34. Int. J. Heat Fluid Flow Ukai 50 254 2014 10.1016/j.ijheatfluidflow.2014.08.009 Effects of dual jets distance on mixing characteristics and flow path within a cavity in supersonic crossflow 

  35. Int. J. Heat Fluid Flow Zare-Behtash 53 146 2015 10.1016/j.ijheatfluidflow.2015.03.004 Transverse jet-cavity interactions with the influence of an impinging shock 

  36. Lusk 2011 Control of Supersonic Cavity Flow by Leading Edge Blowing 

  37. Lusk 2011 Proceedings of 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, United States, 4-7 January, 2011 Flow field effects on control on supersonic open cavities 

  38. Exp. Fluid Lusk 53 187 2012 10.1007/s00348-012-1282-8 Leading edge slot blowing on an open cavity in supersonic flow 

  39. J. Wind Eng. Indust. Aerodyn. Lo 159 110 2016 10.1016/j.jweia.2016.10.009 Flow characteristics over a tractor-trailer model with and without vane-type vortex generator installed 

  40. Exp. Therm. Fluid Sci. Lo 82 58 2017 10.1016/j.expthermflusci.2016.11.003 Flow around an articulated lorry model 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로