$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Silica nanofluids in polyacrylamide with and without surfactant: Viscosity, surface tension, and interfacial tension with liquid paraffin

Journal of petroleum science & engineering, v.152, 2017년, pp.575 - 585  

Sharma, T. ,  Sangwai, J.S.

Abstract AI-Helper 아이콘AI-Helper

The reduction in interfacial tension (IFT) of paraffin crude oil is of key importance, particularly for oilfield applications such as enhanced oil recovery (EOR). Nanoparticle laden suspension such as nanofluid is gaining widespread interest and their use to achieve moderate IFT reduction in paraffi...

Keyword

참고문헌 (45)

  1. J. Colloid Interface Sci. Al-Anssari 461 435 2016 10.1016/j.jcis.2015.09.051 Wettability alteration of oil-wet carbonate by silica nanofluid 

  2. 10.2118/126102-MS Amanullah, Md., Al-Tahini, A.M., 2009. Nano-Technology-Its significance in smart fluid development for oil and gas field application. In: SPE Saudi Arabia section technical symposium, May 9-11, SPE-126102-MS. Saudi Arabia. 

  3. Energy Fuels Bai 28 1829 2014 10.1021/ef402313n Experimental study on ethanolamine/surfactant flooding for enhanced oil recovery 

  4. Energy Fuels Bayat 28 6255 2014 10.1021/ef5013616 Impact of metal oxide nanoparticles on enhanced oil recovery from limestone media at several temperatures 

  5. Langmuir Bell 23 6042 2007 10.1021/la063714h Macroscopic modeling of the surface tension of polymer-surfactant 

  6. Langmuir Binks 23 1098 2007 10.1021/la062510y Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant 

  7. J. Colloid Interface Sci. Binks 335 94 2009 10.1016/j.jcis.2009.03.089 Effects of temperature on water-in-oil emulsions stabilised solely by wax microparticles 

  8. Langmuir Binks 23 7436 2007 10.1021/la700597k Enhanced stabilization of emulsions due to surfactant-induced nanoparticle flocculation 

  9. Appl. Organomet. Chem. Bonnemann 19 768 2005 10.1002/aoc.889 Monodisperse copper and Silver-nanocolloids suitable for heat-conductive fluids 

  10. Energy Fuels Chen 29 2153 2015 10.1021/ef502652a Enhancing heavy-oil recovery by using middle carbon alcohol enhanced water fooding, surfactant flooding, and foam flooding 

  11. Langmuir Dong 19 10205 2003 10.1021/la035128j Surface tension of charge-stabilized colloidal suspensions at the water-air interface 

  12. J. Appl. Polym. Sci. El-sayed 125 1318 2012 10.1002/app.35102 Encapsulation of nano Disperse Red 60 via modified miniemulsion polymerization. I. Preparation and characterization 

  13. Nano. Res. Lett. Fedele 6 300 2011 10.1186/1556-276X-6-300 Experimental stability analysis of different water based nanofluids 

  14. J. Colloid Interface Sci. Goddard 256 228 2002 10.1006/jcis.2001.8066 Polymer/surfactant interaction: interfacial aspects 

  15. 10.2118/159161-RU Hendraningrat, L., Shidong, L., 2012. A glass micromodel experimental study of hydrophilic nanoparticles retention for EOR project. In: SPE Russian oil and gas exhibition and production technical conference and exhibition, Oct 16-18, SPE-159161-MS. Russia. 

  16. Hyne 2014 Dictionary of Petroleum Exploration, Drilling & Production 

  17. 10.2523/17312-MS Iglauer, S., Sarmadivaleh, M., Geng, C., Lebedev, M., 2014. In-situ residual oil saturation and cluster size distribution in sandstones after surfactant and polymer flooding imaged with X-ray micro-computed tomography. In: International petroleum technology conference, January 20-22, IPTC-17312-MS. Qatar. 

  18. J. Nat. Gas Sci. Eng. Jayhooni 9 172 2012 10.1016/j.jngse.2012.05.014 Nanofluid concept for enhancement of hydrogen utilization and gasoline production in fixed bed reactor Fischer-Tropsch synthesis of GTL (gas to liquid) technology 

  19. 10.2523/16707-MS Li, S., Hendraningrat, L., Torsæter, O., 2013. Improved oil recovery by hydrophilic silica nanoparticles suspension: 2 phase flow experimental studies. In: International petroleum technology conference, March 26-28, IPTC-16707-MS. China. 

  20. Fuel Maghzi 123 123 2014 10.1016/j.fuel.2014.01.017 The impact of silica nanoparticles on the performance of polymer solution in presence of salts in polymer flooding for heavy oil recovery 

  21. Int. J. Oil Gas Coal Tech. Mandal 9 241 2015 10.1504/IJOGCT.2015.069001 Chemical flood enhanced oil recovery: a review 

  22. Fluid Phase Equilib. Mandal 408 212 2016 10.1016/j.fluid.2015.09.007 A thermodynamic assessment of micellization for a mixture of sodium dodecyl benzene sulfonate and Tween 80 surfactants for ultralow interfacial tension 

  23. Pet. Sci. Tech. Maurya 34 429 2016 10.1080/10916466.2016.1145693 Studies on behavior of suspension of silica nanoparticle in aqueous polyacrylamide solution for application in enhanced oil recovery 

  24. Phys. Rev. Lett. Mitrinovic 85 582 2000 10.1103/PhysRevLett.85.582 Noncapillary-wave structure at the water-alkane interface 

  25. Mittal 2008 Contact Angle, Wettability and Adhesion 

  26. Colloids Surf. A Ponmani 443 37 2014 10.1016/j.colsurfa.2013.10.048 Formation and characterization of thermal and electrical properties of CuO and ZnO nanofluids in xanthan gum 

  27. Colloids Surf. A Sakthivel 468 62 2015 10.1016/j.colsurfa.2014.12.010 Adsorption of aliphatic ionic liquids at low waxy crude oil-water Interfaces and the effect of brine 

  28. Langmuir Saleh 21 9873 2005 10.1021/la050654r Oil-in-water emulsions stabilized by highly charged polyelectrolyte-grafted silica nanoparticles 

  29. J. Appl. Polym. Sci. ShamsiJazeyi 131 40576 2014 10.1002/app.40576 Polymer-coated nanoparticles for enhanced oil recovery 

  30. J. Pet. Sci. Eng. Sharma 129 221 2015 10.1016/j.petrol.2015.03.015 Comparative effectiveness of production performance of Pickering emulsion stabilized by nanoparticle-surfactant-polymer over surfactant-polymer (SP) flooding for enhanced oil recovery for brownfield reservoir 

  31. Ind. Eng. Chem. Res. Sharma 55 12387 2016 10.1021/acs.iecr.6b03299 Silica nanofluids in an oilfield polymer polyacrylamide: interfacial properties, wettability alteration, and applications for chemical enhanced oil recovery 

  32. J. Phys. Ind. Acad. Sci. Singh 78 759 2012 Study of nanosized zinc oxide and its nanofluid 

  33. Compos. Sci. Technol. Smith 63 1599 2003 10.1016/S0266-3538(03)00061-7 A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite 

  34. 10.2118/170800-MS Srinivasan, A., Shah, S.N., 2014. Surfactant-based fluids containing copper-oxide nanoparticles for heavy oil viscosity reduction. In: SPE annual technical conference and exhibition, Oct 27-29, SPE-170800-MS. Netherlands. 

  35. J. Pet. Sci. Eng. Suleimanov 78 431 2011 10.1016/j.petrol.2011.06.014 Nanofluid for enhanced oil recovery 

  36. 10.2118/164359-MS Tabary, R., Bazin, B., Douarche, F., Moreau, P., Oukhemanou-Destremaut, F., 2013. Surfactants flooding in challenging conditions: Towards hard brines and high temperatures. In: SPE middle east oil and gas show and conference, March 10-13, SPE-164359. Bahrain. 

  37. J. Colloid Interface Sci. Tambe 157 244 1993 10.1006/jcis.1993.1182 Factors controlling the stability of colloid-stabilized emulsions: i. An experimental investigation 

  38. 10.2118/163335-MS Torsater, O., Engeset, B., Hendraningrat, L., Suwarno, S., 2012. Improved oil recovery by nanofluids flooding: an experimental study. In: SPE Kuwait international petroleum conference and exhibition, December 10-12, SPE-163335-MS. Kuwait. 

  39. 10.2118/164106-MS Torsater, O., Li, S., Hendraningrat, L., 2013. A coreflood investigation of nanofluid enhanced oil recovery in low-medium permeability Berea sandstone. In: International symposium on oilfield chemistry, April 8-10, SPE-164106-MS. USA. 

  40. J. Phys. Chem. Ref. Data Vargaftik 12 817 1983 10.1063/1.555688 International tables of the surface tension of water 

  41. 10.2118/172706-MS Wu, X., Han, M., Zahrani, B.H., Guo, L., 2015. Effect of surfactant-polymer interaction on the interfacial properties for chemical EOR. In: SPE middle east oil & gas conference, March 8-11, SPE-172706-MS. Bahrain. 

  42. J. Nanopart. Res. Xue 14 1239 2012 10.1007/s11051-012-1239-0 Visco-elastic gels of guar and xanthan gum mixtures provide long term stabilization of iron-micro and nanoparticles 

  43. Fuel Zargartalebi 143 21 2015 10.1016/j.fuel.2014.11.040 Enhancement of surfactant flooding performance by the use of silica nanoparticles 

  44. J. Chem. Eng. Data Zeppieri 46 1086 2001 10.1021/je000245r Interfacial tension of alkane + water systems 

  45. Curr. Appl. Phys. Zhu 9 131 2010 10.1016/j.cap.2007.12.008 Dispersion behavior and thermal Conductivity characteristics of Al2O3-H2O nanofluids 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로