$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology 원문보기

Laboratory investigation, v.97 no.6, 2017년, pp.649 - 656  

Kawakami, Akinori ,  Fisher, David E

초록이 없습니다.

참고문헌 (97)

  1. Genes Dev Hemesath 8 2770 1994 10.1101/gad.8.22.2770 microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family 

  2. Pigment Cell Melanoma Res Hoek 21 665 2008 10.1111/j.1755-148X.2008.00505.x Novel MITF targets identified using a two-step DNA microarray strategy 

  3. Pigment Cell Melanoma Res Cheli 23 27 2010 10.1111/j.1755-148X.2009.00653.x Fifteen-year quest for microphthalmia-associated transcription factor target genes 

  4. Oncogene Strub 30 2319 2011 10.1038/onc.2010.612 Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma 

  5. Z Induct Abstammungs-Vererbungsl Hertwig 80 220 1942 Neue mutationen und Kopplungsgruppen bei der Hausmaus 

  6. Nat Genet Steingrímsson 8 256 1994 10.1038/ng1194-256 Molecular basis of mouse microphthalmia (mi mutations helps explain their developmental and phenotypic consequences 

  7. Annu Rev Genet Steingrímsson 38 365 2004 10.1146/annurev.genet.38.072902.092717 Melanocytes and the microphthalmia transcription factor network 

  8. Cell Hodgkinson 74 395 1993 10.1016/0092-8674(93)90429-T Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein 

  9. Nat Genet Tassabehji 8 251 1994 10.1038/ng1194-251 Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF gene 

  10. Gene Hershey 347 73 2005 10.1016/j.gene.2004.12.002 Genomic analysis of the Microphthalmia locus and identification of the MITF-J/Mitf-J isoform 

  11. J Clin Invest Tshori 116 2673 2006 10.1172/JCI27643. Transcription factor MITF regulates cardiac growth and hypertrophy 

  12. Diabetes Mazur 62 2834 2013 10.2337/db12-1464 Microphthalmia transcription factor regulates pancreatic β-cell function 

  13. Nat Genet Pingault 18 171 1998 10.1038/ng0298-171 SOX10 mutations in patients with Waardenburg-Hirschsprung disease 

  14. Nat Genet Watanabe 3 283 1998 10.1038/ng0398-283 Epistatic relationship between Waardenburg syndrome genes MITFPAX3 

  15. Annu Rev Cell Dev Biol Betancur 26 581 2010 10.1146/annurev.cellbio.042308.113245 Assembling neural crest regulatory circuits into a gene regulatory network 

  16. J Biol Chem Verastegui 275 30757 2000 10.1074/jbc.C000445200 Regulation of the microphthalmia-associated transcription factor gene by the Waardenburg Syndrome type 4 gene SOX10 

  17. Mol Cell Biol Bonvin 32 4674 2012 10.1128/MCB.01067-12 A phosphatidylinositol 3-kinase-Pax3 axis regulates Brn-2 expression in melanoma 

  18. Front Oncol Eccles 3 229 2013 10.3389/fonc.2013.00229 MITF and PAX3 play distinct roles in melanoma cell migration; outline of a ‘genetic switch' theory involving MITF and PAX3 in proliferative and invasive phenotypes of melanoma 

  19. Exp Cell Res Kuzumaki 207 33 1993 10.1006/excr.1993.1159 Eumelanin biosynthesis is regulated by coordinate expression of tyrosinase and tyrosinase-related protein-1 genes 

  20. J Cell Biol Bertolotto 142 827 1998 10.1083/jcb.142.3.827 Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes 

  21. J Biol Chem Price 273 33042 1998 10.1074/jbc.273.49.33042 α-Melanocyte-stimulating hormone signaling regulates expression of microphthalmia, a gene deficient in Waardenburg syndrome 

  22. Cell Cui 128 853 2007 10.1016/j.cell.2006.12.045 Central role of p53 in the suntan response and pathologic hyperpigmentation 

  23. J Biol Chem Takeda 275 14013 2000 10.1074/jbc.C000113200 Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a 

  24. Biochem Biophys Res Commun Jacquemin 285 1200 2001 10.1006/bbrc.2001.5294 The transcription factor onecut-2 controls the microphthalmia-associated transcription factor gene 

  25. Cell Rep Manderfield 9 1885 2014 10.1016/j.celrep.2014.10.061 Pax3 and hippo signaling coordinate melanocyte gene expression in neural crest 

  26. Development Kos 128 1467 2001 10.1242/dev.128.8.1467 The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos 

  27. Development Thomas 136 1849 2009 10.1242/dev.031989 FOXD3 regulates the lineage switch between neural crest-derived glial cells and pigment cells by repressing MITF through a non-canonical mechanism 

  28. Dev Biol Curran 332 408 2009 10.1016/j.ydbio.2009.06.010 FoxD3 controls melanophore specification in the zebrafish neural crest by regulation of Mitf 

  29. Cancer Res Goodall 68 7788 2008 10.1158/0008-5472.CAN-08-1053 Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells 

  30. Cell Stem Cell Nishimura 6 130 2010 10.1016/j.stem.2009.12.010 Key roles for transforming growth factor beta in melanocyte stem cell maintenance 

  31. Mol Cell Yang 32 554 2008 10.1016/j.molcel.2008.11.002 Inhibition of PAX3 by TGF-β modulates melanocyte viability 

  32. J Biol Chem Pierrat 287 17996 2012 10.1074/jbc.M112.358341 Expression of microphthalmia-associated transcription factor (MITF), which is critical for melanoma progression, is inhibited by both transcription factor GLI2 and transforming growth factor-β 

  33. Nature Landsberg 490 412 2012 10.1038/nature11538 Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation 

  34. Oncogene Perotti 35 2862 2016 10.1038/onc.2015.355 NFATc2 is an intrinsic regulator of melanoma dedifferentiation 

  35. Cancer Discov Smith 4 1214 2014 10.1158/2159-8290.CD-13-1007 The immune microenvironment confers resistance to MAPK pathway inhibitors through macrophage-derived TNFα 

  36. Proc Natl Acad Sci USA Feige 108 E924 2011 10.1073/pnas.1106351108 Hypoxia-induced transcriptional repression of the melanoma-associated oncogene MITF 

  37. Nature Mallarino 539 518 2016 10.1038/nature20109 Developmental mechanisms of stripe patterns in rodents 

  38. Mol Cell Biol Yasumoto 14 8058 1994 Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene 

  39. Mol Cell Biol Bertolotto 18 694 1998 10.1128/MCB.18.2.694 Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia 

  40. Am J Pathol Du 163 333 2003 10.1016/S0002-9440(10)63657-7 MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma 

  41. Cell McGill 109 707 2002 10.1016/S0092-8674(02)00762-6 Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability 

  42. Cancer Cell Du 6 565 2004 10.1016/j.ccr.2004.10.014 Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF 

  43. PLoS Genet Li 8 e1002688 2012 10.1371/journal.pgen.1002688 YY1 regulates melanocyte development and function by cooperating with MITF 

  44. Genome Res Webster 24 751 2014 10.1101/gr.166231.113 Enhancer-targeted genome editing selectively blocks innate resistance to oncokinase inhibition 

  45. Cancer Cell Haq 23 302 2013 10.1016/j.ccr.2013.02.003 Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF 

  46. Proc Natl Acad Sci USA Ploper 112 E420 2015 10.1073/pnas.1424576112 MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells 

  47. Mol Cell Biol Hu 27 4018 2007 10.1128/MCB.01839-06 Eos, MITF, and PU.1 recruit corepressors to osteoclast-specific genes in committed myeloid progenitors 

  48. Immunity Qi 39 97 2013 10.1016/j.immuni.2013.06.012 Antagonistic regulation by the transcription factors C/EBPα and MITF specifies basophil and mast cell fates 

  49. Int J Cardiol Rachmin 195 85 2015 10.1016/j.ijcard.2015.05.108 FHL2 switches MITF from activator to repressor of Erbin expression during cardiac hypertrophy 

  50. Cell Death Differ Denecker 21 1250 2014 10.1038/cdd.2014.44 Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression 

  51. Nat Commun Riesenberg 6 8755 2015 10.1038/ncomms9755 MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment 

  52. Mol Cell Golan 59 664 2015 10.1016/j.molcel.2015.06.028 Interactions of Melanoma Cells with Distal Keratinocytes Trigger Metastasis via Notch Signaling Inhibitor of MITF 

  53. Oncogene Sato 14 3083 1997 10.1038/sj.onc.1201298 CBP/p300 as a co-factor for the Microphthalmia transcription factor 

  54. J Biol Chem Price 273 17983 1998 10.1074/jbc.273.29.17983 Lineage-specific signaling in melanocytes. C-kit stimulation recruits p300/CBP to microphthalmia 

  55. J Biol Chem de la Serna 281 20233 2006 10.1074/jbc.M512052200 The microphthalmia-associated transcription factor requires SWI/SNF enzymes to activate melanocyte-specific genes 

  56. Oncogene Keenen 29 81 2010 10.1038/onc.2009.304 Heterogeous SWI/SNF chromatin remodeling complexes promote expression of microphthalmia-associated transcription factor target genes in melanoma 

  57. Elife Laurette 4 e06857 2015 10.7554/eLife.06857 Transcription factor MITF and remodeller BRG1 define chromatin organization at regulatory elements in melanoma cells 

  58. Development Steel 115 1111 1992 10.1242/dev.115.4.1111 TRP-2/DT, a new early melanoblast marker, shows that steel growth factor (c-kit ligand) is a survival factor 

  59. J Investing Dermatol Symp Proc Yoshida 6 1 2001 10.1046/j.0022-202x.2001.00006.x Review: melanocyte migration and survival controlled by SCF/c-kit expression 

  60. Nature Hemesath 391 298 1998 10.1038/34681 MAP kinase links the transcription factor Microphthalmia to c-Kit singalling in melanocytes 

  61. Genes Dev Wu 14 301 2000 10.1101/gad.14.3.301 c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi 

  62. Genetics Bauer 183 581 2009 10.1534/genetics.109.103945 The role of MITF phosphorylation sites during coat color and eye development in mice analyzed by bacterial artificial chromosome transgene rescue 

  63. Nature Davies 417 949 2002 10.1038/nature00766 Mutations of the BRAF gene in human cancer 

  64. Cell Cancer Genome Atlas Network 161 1681 2015 10.1016/j.cell.2015.05.044 Genomic classification of cutaneous melanoma 

  65. Nature Garraway 436 117 2005 10.1038/nature03664 Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma 

  66. J Cell Biol Wellbrock 170 703 2005 10.1083/jcb.200505059 Elevated expression of MITF counteracts B-RAF-stimulated melanocyte and melanoma cell proliferation 

  67. Clin Cancer Res Frederick 19 1225 2013 10.1158/1078-0432.CCR-12-1630 BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma 

  68. Cancer Cell Smith 29 270 2016 10.1016/j.ccell.2016.02.003 Inhibiting drivers of non-mutational drug tolerance is a salvage strategy for targeted melanoma therapy 

  69. PLoS One Wellbrock 3 e2734 2008 10.1371/journal.pone.0002734 Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF 

  70. Cancer Cell Davis 9 473 2006 10.1016/j.ccr.2006.04.021 Oncogenic MITF dysregulation in clear cell sarcoma: defining the MiT family of human cancers 

  71. J Pathol Harbst 233 39 2014 10.1002/path.4318 Molecular and genetic diversity in the metastatic process of melanoma 

  72. Pigment Cell Melanoma Res Aktary 29 524 2016 10.1111/pcmr.12501 The WNT-less wonder: WNT-independent β-catenin signaling 

  73. J Biol Chem McGill 281 10365 2006 10.1074/jbc.M513094200 c-Met expression is regulated by Mitf in the melanocyte lineage 

  74. Cancer Res Fujita-Sato 75 2851 2015 10.1158/0008-5472.CAN-14-1623 Enhanced MET translation and signaling sustains K-ras-driven proliferation under anchorage-independent growth conditions 

  75. Mol Cell Biol Fisher 31 2453 2011 10.1128/MCB.05255-11 Kinase suppressor of ras1 (KSR1) regulates PGC1 α and estrogen-related receptor α to promote oncogenic Ras-dependent anchorage-independent growth 

  76. Oncotarget De Luca 6 14777 2015 10.18632/oncotarget.4401 Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells 

  77. Nature Jiang 532 255 2016 10.1038/nature17393 Reductive carboxylation supports redox homeostasis during anchorage-independent growth 

  78. Nature Bertolotto 480 94 2011 10.1038/nature10539 A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma 

  79. Nature Yokoyama 480 99 2011 10.1038/nature10630 A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma 

  80. J Biol Chem Miller 280 146 2005 10.1074/jbc.M411757200 Sumoylation of MITF and its related family members TFE3 and TFEB 

  81. Hum Mol Genet Sidhar 5 1333 1996 10.1093/hmg/5.9.1333 The t(X;1)(p11.2;q21.2) translocation in papillary renal cell carcinoma fuses a novel gene PRCC to the TFE3 transcription factor gene 

  82. Nat Rev Urol Kaufman 11 465 2014 10.1038/nrurol.2014.162 Molecular genetics and cellular features of TFE3TFEB fusion kidney cancers 

  83. Proc Natl Acad Sci USA Davis 100 6051 2003 10.1073/pnas.0931430100 Cloning of an Alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation 

  84. Oncogene Ladanyi 20 48 2001 10.1038/sj.onc.1204074 The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25 

  85. Nature Perera 524 361 2015 10.1038/nature14587 Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism 

  86. Proc Natl Acad Sci USA Haq 110 4321 2013 10.1073/pnas.1205575110 BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition 

  87. J Invest Dermatol Hartman 135 352 2015 10.1038/jid.2014.319 Pro-survival role of MITF in melanoma 

  88. Pigment Cell Res Hoek 19 290 2006 10.1111/j.1600-0749.2006.00322.x Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature 

  89. Pigment Cell Melanoma Res Wellbrock 28 390 2015 10.1111/pcmr.12370 Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy 

  90. Cancer Discov Konieczkowski 4 816 2014 10.1158/2159-8290.CD-13-0424 A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors 

  91. Nat Commun Muller 5 5712 2014 10.1038/ncomms6712 Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma 

  92. Oncogene Ennen 34 3251 2015 10.1038/onc.2014.262 Single-cell gene expression signatures reveal melanoma cell heterogeneity 

  93. Science Tirosh 352 189 2016 10.1126/science.aad0501 Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq 

  94. Pigment Cell Melanoma Res Yokoyama 21 457 2008 10.1111/j.1755-148X.2008.00480.x Pharmacologic suppression of MITF expression via HDAC inhibitors in the melanocyte lineage 

  95. Nat Commun Zhao 2 414 2011 10.1038/ncomms1421 Regulation of MITF stability by the USP13 deubiquitinase 

  96. Faloon PW, Bennion M, Weiner WS et al, A Small Molecule Inhibitor of the MITF Molecular Pathway. Probe Reports from the NIH Molecular Libraries Program, [Internet], National Center for Biotechnology Information (US): Bethesda (MD), 2010-2012 December 13 [updated 2014 September 18]. 

  97. N Engl J Med Larkin 373 23 2015 10.1056/NEJMoa1504030 Combined nivolumab and ipilimumab or monotherapy in untreated melanoma 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로