$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] A simple, flexible and high‐throughput cloning system for plant genome editing via CRISPR‐Cas system

Journal of integrative plant biology, v.58 no.8, 2016년, pp.705 - 712  

Kim, Hyeran (Center for Genome Engineering, Institute for Basic Science, Yuseong‐) ,  Kim, Sang‐Tae (gu, Daejeon, 34047, South Korea) ,  Ryu, Jahee (Center for Genome Engineering, Institute for Basic Science, Yuseong‐) ,  Choi, Min Kyung (gu, Daejeon, 34047, South Korea) ,  Kweon, Jiyeon (Center for Genome Engineering, Institute for Basic Science, Yuseong‐) ,  Kang, Beum‐Chang (gu, Daejeon, 34047, South Korea) ,  Ahn, Hyo‐Min (Center for Genome Engineering, Institute for Basic Science, Yuseong‐) ,  Bae, Suji (gu, Daejeon, 34047, South Korea) ,  Kim, Jungeun (Department of Chemistry, Seoul National University, Seoul, 08826, South Korea) ,  Kim, Jin‐Soo (Center for Genome Engineering, Institute for Basic Science, Yuseong‐) ,  Kim, Sang‐Gyu (gu, Daejeon, 34047, South Korea)

Abstract AI-Helper 아이콘AI-Helper

CRISPR-Cas9 system is now widely used to edit a target genome in animals and plants. Cas9 protein derived from Streptococcus pyogenes (SpCas9) cleaves double-stranded DNA targeted by a chimeric single-guide RNA (sgRNA). For plant genome editing, Agrobacterium-mediated T-DNA transformation has been b...

Keyword

참고문헌 (45)

  1. Araki M , Ishii T ( 2015 ) Towards social acceptance of plant breeding by genome editing . Trends Plant Sci 20 : 145 – 149 

  2. Bae S , Kweon J , Kim HS , Kim JS ( 2014 ) Microhomology‐based choice of Cas9 nuclease target sites . Nat Methods 11 : 705 – 706 

  3. Baltes NJ , Voytas DF ( 2015 ) Enabling plant synthetic biology through genome engineering . Trends Biotech 33 : 120 – 131 

  4. Belhaj K , Chaparro‐Garcia A , Kamoun S , Nekrasov V ( 2013 ) Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system . Plant Methods 9 : 39 

  5. Bibikova M , Golic M , Golic KG , Carroll D ( 2002 ) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc‐finger nucleases . Genetics 161 : 1169 – 1175 

  6. Brooks C , Nekrasov V , Lippman ZB , Van Eck J ( 2014 ) Efficient gene editing in Tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR‐associated9 system . Plant Physiol 166 : 1292 – 1297 

  7. Cho SW , Kim S , Kim JM , Kim J‐S ( 2013 ) Targeted genome engineering in human cells with the Cas9 RNA‐guided endonuclease . Nat Biotech 31 : 230 – 232 

  8. Cho SW , Kim S , Kim Y , Kweon J , Kim HS , Bae S , Kim JS ( 2014 ) Analysis of off‐target effects of CRISPR Cas‐derived RNA‐guided endonucleases and nickases . Genome Res 24 : 132 – 141 

  9. Clough SJ , Bent AF ( 1998 ) Floral dip: A simplified method for Agrobacterium ‐mediated transformation of Arabidopsis thaliana . Plant J 16 : 735 – 743 

  10. Deltcheva E , Chylinski K , Sharma CM , Gonzales K , Chao Y , Pirzada ZA , Eckert MR , Vogel J , Charpentier E ( 2011 ) CRISPR RNA maturation by trans‐encoded small RNA and host factor RNase III . Nature 471 : 602 – 607 

  11. Doudna JA , Charpentier E ( 2014 ) The new frontier of genome engineering with CRISPR‐Cas9 . Science 346 : DOI: 10.1126/science.1258096 

  12. Guilinger JP , Thompson DB , Liu DR ( 2014 ) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification . Nat Biotech 32 : 577 – 582 

  13. Hsu PD , Lander ES , Zhang F ( 2014 ) Development and applications of CRISPR‐Cas9 for genome engineering . Cell 157 : 1262 – 1278 

  14. Hyun Y , Kim J , Cho SW , Choi Y , Kim JS , Coupland G ( 2014 ) Site‐directed mutagenesis in Arabidopsis thaliana using dividing tissue‐targeted RGEN of the CRISPR/Cas system to generate heritable null alleles . Planta 241 : 271 – 284 

  15. Jinek M , Chylinski K , Fonfara I , Hauer M , Doudna JA , Charpentier E ( 2012 ) A programmable dual‐RNA‐guided DNA endonuclease in adaptive bacterial immunity . Science 337 : 816 – 821 

  16. Karimi M , Depicker A , Hilson P ( 2007 ) Recombinational cloning with plant gateway vectors . Plant Physiol 145 : 1144 – 1154 

  17. Karimi M , Inzé D , Depicker A ( 2002 ) GATEWAY TM vectors for Agrobacterium ‐mediated plant transformation . Trends Plant Sci 7 : 193 – 195 

  18. Kim D , Bae S , Park J , Kim E , Kim S , Yu HR , Hwang J , Kim JI , Kim JS ( 2015a ) Digenome‐seq: Genome‐wide profiling of CRISPR‐Cas9 off‐target effects in human cells . Nat Methods 12 : 237 – 243 

  19. Kim H , Kim JS ( 2014 ) A guide to genome engineering with programmable nucleases . Nat Rev Genet 15 : 321 – 334 

  20. Kim H , Kim ST , Kim JS , Kim SG ( 2015b ) Targeted genome editing for crop improvement . Plant Breed Biotech 3 : 283 – 290 

  21. Kleinstiver BP , Prew MS , Tsai SQ , Topkar VV , Nguyen NT , Zheng Z , Gonzales APW , Li Z , Peterson RT , Yeh JRJ , Aryee MJ ( 2015 ) Engineered CRISPR‐Cas9 nucleases with altered PAM specificities . Nature 523 : 481 – 485 

  22. Kleinstiver BP , Pattanayak V , Prew MS , Tsai SQ , Nguyen NT , Zheng Z , Joung JK ( 2016 ) High‐fidelity CRISPR‐Cas9 nucleases with no detectable genome‐wide off‐target effects . Nature 529 : 490 – 495 

  23. Krügel T , Lim M , Gase K , Halitschke R , Baldwin IT ( 2002 ) Agrobacterium ‐mediated transformation of Nicotiana attenuata , a model ecological expression system . Chemoecology 12 : 177 – 183 

  24. Lawrenson T , Shorinola O , Stacey N , Li C , Østergaard L , Patron N , Uauy C , Harwood W ( 2015 ) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA‐guided Cas9 nuclease . Genome Biol 16 : 258 

  25. Li JF , Norville JE , Aach J , McCormack M , Zhang D , Bush J , Church GM , Sheen J ( 2013 ) Multiplex and homologous recombination‐mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9 . Nat Biotech 31 : 688 – 691 

  26. Ma X , Zhang Q , Zhu Q , Liu W , Chen Y , Qiu R , Wang B , Yang Z , Li H , Lin Y , Xie Y ( 2015 ) A robust CRISPR/Cas9 system for convenient, high‐efficiency multiplex genome editing in monocot and dicotplants . Mol Plant 8 : 1274 – 1284 

  27. Mali P , Aach J , Stranges PB , Esvelt KM , Moosburner M , Kosuri S , Yang L , Church GM ( 2013 ) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering . Nat Biotech 31 : 833 – 838 

  28. Mao Y , Zhang Z , Feng Z , Wei P , Zhang H , Botella JR , Zhu JK ( 2016 ) Development of germ‐line‐specific CRISPR‐Cas9 systems to improve the production of heritable gene modifications in Arabidopsis . Plant Biotech J 14 : 519 – 532 

  29. Mojica FJM , Diez‐Villasenor C , Garcia‐Martinez J , Almendros C ( 2009 ) Short motif sequences determine the targets of the prokaryotic CRISPR defence system . Microbiology 155 : 733 – 740 

  30. Nekrasov V , Staskawicz B , Weigel D , Jones JDG , Kamoun S ( 2013 ) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA‐guided endonuclease . Nat Biotech 31 : 691 – 693 

  31. Park J , Bae S , Kim J ( 2015 ) Cas‐Designer: A web‐based tool for choice of CRISPR‐Cas9 target sites . Bioinformatics 31 : 4014 – 4016 

  32. Qi LS , Larson MH , Gilbert LA , Doudna JA , Weissman JS , Arkin AP , Lim WA ( 2013 ) Repurposing CRISPR as an RNA‐guided platform for sequence‐specific control of gene expression . Cell 152 : 1173 – 1183 

  33. Ran FA , Cong L , Yan WX , Scott DA , Gootenberg JS , Kriz AJ , Zetsche B , Shalem O , Wu X , Makarova KS , Koonin EV ( 2015a ) In vivo genome editing using Staphylococcus aureus Cas9 . Nature 520 : 186 – 191 

  34. Ran FA , Hsu PD , Lin CY , Gootenberg JS , Konermann S , Trevino AE , Scott DA , Inoue A , Matoba S , Zhang Y , Zhang F ( 2015b ) Double nicking by RNA‐guided CRISPR Cas9 for enhanced genome editing specificity . Cell 154 : 1380 – 1389 

  35. Rouet P , Smih F , Jasin M ( 1994 ) Introduction of double‐strand breaks into the genome of mouse cells by expression of a rare‐cutting endonuclease . Mol Cell Biol 14 : 8096 – 8106 

  36. Shan Q , Wang Y , Li J , Zhang Y , Chen K , Liang Z , Zhang K , Liu J , Xi JJ , Qiu JL , Gao C ( 2013 ) Targeted genome modification of crop plants using a CRISPR‐Cas system . Nat Biotech 31 : 686 – 688 

  37. Slaymaker , IM , Gao , L , Zetsche , B , Scott , DA , Yan , WX , Zhang , F ( 2016 ) Rationally engineered Cas9 nucleases with improved specificity . Science 351 : 84 – 88 

  38. Sternberg SH , Doudna JA ( 2015 ) Expanding the biologist's toolkit with CRISPR‐Cas9 . Mol Cell 58 : 568 – 574 

  39. Sun X , Hu Z , Chen R , Jiang Q , Song G , Zhang H , Xi Y ( 2015 ) Targeted mutagenesis in soybean using the CRISPR‐Cas9 system . Sci Rep 5 : 10342 

  40. Voytas DF , Gao C ( 2014 ) Precision genome engineering and agriculture: Opportunities and regulatory challenges . PLoS Biol 12 : e1001877 

  41. Wang S , Zhang S , Wang W , Xiong X , Meng F , Cui X ( 2015 ) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system . Plant Cell Rep 34 : 1473 – 1476 

  42. Wang Y , Cheng X , Shan Q , Zhang Y , Liu J , Gao C , Qiu JL ( 2014 ) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew . Nat Biotech 32 : 947 – 951 

  43. Xie K , Minkenberg B , Yang Y ( 2015 ) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA‐processing system . Proc Natl Acad Sci USA 112 : 3570 – 3575 

  44. Xing HL , Dong L , Wang ZP , Zhang HY , Han CY , Liu B , Wang XC , Chen QJ ( 2014 ) A CRISPR/Cas9 toolkit for multiplex genome editing in plants . BMC Plant Biol 14 : 327 

  45. Zetsche B , Gootenberg JS , Abudayyeh OO , Slaymaker IM , Makarova KS , Essletzbichler P , Volz SE , Joung J , van der Oost J , Regev A , Koonin EV ( 2015 ) Cpf1 is a single RNA‐guided endonuclease of a class 2 CRISPR‐Cas system . Cell 163 : 759 – 771 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로