$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Non-BMD DXA measurements of the hip

Bone, v.104, 2017년, pp.73 - 83  

Edmondson, C.P. ,  Schwartz, E.N.

Abstract AI-Helper 아이콘AI-Helper

Hip fracture is one of the most serious complications of osteoporosis. More than 50% of hip and other fractures occur in patients without densitometric osteoporosis. Therefore, areal bone mineral density (aBMD) may not be the best way to assess fracture risk. In order to improve assessment of fractu...

주제어

참고문헌 (106)

  1. Hip Fractures Among Older Adults | Home and Recreational Safety | CDC Injury Center. Retrieved December 21, 2016, from https://www.cdc.gov/homeandrecreationalsafety/falls/adulthipfx.html 

  2. Bone Kannus 18 1 Suppl 57S 1996 10.1016/8756-3282(95)00381-9 Epidemiology of hip fractures 

  3. Kiel, D. P. (Moderator) (2016). Call to Action to Address the Crisis in the Treatment of Osteoporosis, ASBMR, [Webinar]. (December 6, 2016). 

  4. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Ray 12 1 24 1997 10.1359/jbmr.1997.12.1.24 Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation 

  5. JAMA Col 277 14 1140 1997 10.1001/jama.1997.03540380054031 Patient-specific decisions about hormone replacement therapy in postmenopausal women 

  6. Am. J. Med. 94 6 646 1993 10.1016/0002-9343(93)90218-E 

  7. Arch. Intern. Med. Chrischilles 151 10 2026 1991 10.1001/archinte.1991.00400100100017 A model of lifetime osteoporosis impact 

  8. J. Bone Miner. Res. Lewiecki 31 1 26 2016 Hip fractures and declining DXA testing: at a breaking point? 

  9. J. Bone Miner. Res. Kanis 9 8 1137 1994 10.1002/jbmr.5650090802 The diagnosis of osteoporosis 

  10. J. Clin. Endocrinol. Metab. Wainwright 90 5 2787 2005 10.1210/jc.2004-1568 Hip fracture in women without osteoporosis 

  11. AJR Am. J. Roentgenol. Sartoris 144 3 605 1985 10.2214/ajr.144.3.605 Bone mineral density in the femoral neck: quantitative assessment using dual-energy projection radiography 

  12. Clin. Orthop. Relat. Res. Bohr 179 240 1983 10.1097/00003086-198310000-00037 Bone mineral content of femoral bone and the lumbar spine measured in women with fracture of the femoral neck by dual photon absorptiometry 

  13. Acta Orthop. Scand. Eriksson 59 1 19 1988 10.3109/17453678809149337 Bone mass in women with hip fracture 

  14. JAMA 285 6 785 2001 10.1001/jama.285.6.785 

  15. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Silva 29 3 518 2014 10.1002/jbmr.2176 Trabecular bone score: a noninvasive analytical method based upon the DXA image 

  16. Bone Harvey 78 216 2015 10.1016/j.bone.2015.05.016 Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice 

  17. McGinnis 245 2013 Biomechanics of Sport and Exercise Mechanics of biological materials 

  18. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Faulkner 8 10 1211 1993 10.1002/jbmr.5650081008 Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures 

  19. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Faulkner 9 7 1065 1994 10.1002/jbmr.5650090714 Automated evaluation of hip axis length for predicting hip fracture 

  20. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Faulkner 10 3 506 1995 10.1002/jbmr.5650100323 Hip axis length and osteoporotic fractures. Study of osteoporotic fractures research group 

  21. Br. J. Radiol. Gnudi 72 860 729 1999 10.1259/bjr.72.860.10624337 Geometry of proximal femur in the prediction of hip fracture in osteoporotic women 

  22. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Boonen 10 12 1908 1995 10.1002/jbmr.5650101210 Measurement of femoral geometry in type I and type II osteoporosis: differences in hip axis length consistent with heterogeneity in the pathogenesis of osteoporotic fractures 

  23. Osteoporosis International: A Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA Wang 20 7 1151 2009 10.1007/s00198-008-0768-y Women and men with hip fractures have a longer femoral neck moment arm and greater impact load in a sideways fall 

  24. Journal of Clinical Densitometry: The Official Journal of the International Society for Clinical Densitometry Broy 18 3 287 2015 10.1016/j.jocd.2015.06.005 Fracture risk prediction by non-BMD DXA measures: the 2015 ISCD Official positions part 1: hip geometry 

  25. J. Clin. Endocrinol. Metab. Leslie 100 5 2063 2015 10.1210/jc.2014-4390 Hip axis length is a FRAX- and bone density-independent risk factor for hip fracture in women 

  26. Revue Du Rhumatisme (English Ed.) Roux 64 4 243 1997 Hip axis length measurement using dual-energy X-ray absorptiometry 

  27. Journal of Clinical Densitometry: The Official Journal of the International Society for Clinical Densitometry Faulkner 6 4 353 2003 10.1385/JCD:6:4:353 Improving femoral bone density measurements 

  28. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Duboeuf 12 11 1895 1997 10.1359/jbmr.1997.12.11.1895 Different morphometric and densitometric parameters predict cervical and trochanteric hip fracture: the EPIDOS study 

  29. Osteoporosis International: A Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA Faulkner 17 4 593 2006 10.1007/s00198-005-0019-4 Femur strength index predicts hip fracture independent of bone density and hip axis length 

  30. Osteoporosis International: A Journal Established as Result of Cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA Leslie 20 10 1767 2009 10.1007/s00198-009-0874-5 Prediction of hip and other osteoporotic fractures from hip geometry in a large clinical cohort 

  31. Bone Flicker 18 1 41 1996 10.1016/8756-3282(95)00418-1 Determinants of hip axis length in women aged 10-89years: a twin study 

  32. BMC Musculoskelet. Disord. Lee 17 42 2016 10.1186/s12891-016-0893-2 Femoral geometry, bone mineral density, and the risk of hip fracture in premenopausal women: a case control study 

  33. Osteoporosis International: A Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA Greendale 14 4 320 2003 10.1007/s00198-002-1367-y Hip axis length in mid-life Japanese and Caucasian U.S. residents: no evidence for an ethnic difference 

  34. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Nieves 20 3 529 2005 10.1359/JBMR.041005 Males have larger skeletal size and bone mass than females, despite comparable body size 

  35. Acta Radiol. (Stockholm, Sweden: 1987) Nissen 46 5 514 2005 Geometry of the proximal femur in relation to age and sex: a cross-sectional study in healthy adult Danes 

  36. Current Osteoporosis Reports Brownbill 1 1 25 2003 10.1007/s11914-003-0005-8 Hip geometry and its role in fracture: what do we know so far? 

  37. Osteoporosis International: A Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA Pande 11 10 866 2000 10.1007/s001980070046 Bone mineral density, hip axis length and risk of hip fracture in men: results from the Cornwall hip fracture study 

  38. Osteoporosis International: A Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA Alonso 11 8 714 2000 10.1007/s001980070071 Femoral bone mineral density, neck-shaft angle and mean femoral neck width as predictors of hip fracture in men and women. Multicenter project for research in osteoporosis 

  39. Journal of Clinical Densitometry: The Official Journal of the International Society for Clinical Densitometry Gao 11 3 360 2008 10.1016/j.jocd.2008.04.005 Hip axis length changes in 10,554 males and females and the association with femoral neck fracture 

  40. Br. J. Radiol. Ripamonti 87 1037 20130358 2014 10.1259/bjr.20130358 Femoral neck shaft angle width is associated with hip-fracture risk in males but not independently of femoral neck bone density 

  41. Journal of Clinical Densitometry: The Official Journal of the International Society for Clinical Densitometry Leslie 19 3 326 2016 10.1016/j.jocd.2015.07.004 Adjusting hip fracture probability in men and women using hip axis length: The Manitoba bone density database 

  42. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Wang 12 11 1922 1997 10.1359/jbmr.1997.12.11.1922 Bone mass and hip axis length in healthy Asian, black, Hispanic, and white American youths 

  43. Osteoporosis International: A Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA Cummings 4 4 226 1994 10.1007/BF01623243 Racial differences in hip axis lengths might explain racial differences in rates of hip fracture. Study of osteoporotic fractures research group 

  44. Bone Yan 34 3 584 2004 10.1016/j.bone.2003.12.005 Does hip strength analysis explain the lower incidence of hip fracture in the People's Republic of China? 

  45. Osteoarthr. Cartil. Castaño-Betancourt 21 10 1530 2013 10.1016/j.joca.2013.06.012 The contribution of hip geometry to the prediction of hip osteoarthritis 

  46. Osteoporosis International: A Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA Zhang 22 9 2513 2011 10.1007/s00198-010-1479-8 Age trends for hip geometry in Chinese men and women and the association with femoral neck fracture 

  47. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Nakamura 9 7 1071 1994 10.1002/jbmr.5650090715 Do variations in hip geometry explain differences in hip fracture risk between Japanese and white Americans? 

  48. Am. J. Clin. Nutr. Pollitzer 50 6 1244 1989 10.1093/ajcn/50.6.1244 Ethnic and genetic differences in bone mass: a review with a hereditary vs environmental perspective 

  49. Osteoporosis International: A Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA Clark 19 9 1301 2008 10.1007/s00198-008-0572-8 Hip axis length variation: its correlation with anthropometric measurements in women from three ethnic groups 

  50. Journal of Clinical Densitometry: The Official Journal of the International Society for Clinical Densitometry Lewiecki 19 2 127 2016 10.1016/j.jocd.2016.03.003 Best practices for dual-energy X-ray absorptiometry measurement and reporting: International Society for Clinical Densitometry Guidance 

  51. Osteoporosis International: A Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA Peacock 5 3 167 1995 10.1007/BF02106096 Better discrimination of hip fracture using bone density, geometry and architecture 

  52. European Prospective Osteoporosis Study. Osteoporosis International: A Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA Crabtree 13 1 48 2002 10.1007/s198-002-8337-y Improving risk assessment: hip geometry, bone mineral distribution and bone strength in hip fracture cases and controls. The EPOS study 

  53. Journal of Clinical Densitometry: The Official Journal of the International Society for Clinical Densitometry Shepherd 18 3 274 2015 10.1016/j.jocd.2015.06.013 Executive summary of the 2015 ISCD position development conference on advanced measures from DXA and QCT: fracture prediction beyond BMD 

  54. Beck 

  55. Journal of Clinical Densitometry: The Official Journal of the International Society for Clinical Densitometry Beck 18 3 331 2015 10.1016/j.jocd.2015.06.006 Measurement of hip geometry-technical background 

  56. Investig. Radiol. Beck 25 1 6 1990 10.1097/00004424-199001000-00004 Predicting femoral neck strength from bone mineral data. A structural approach 

  57. Beck 1 2002 Hip Structural Analysis (HSA) Program, (BMD and Structural Geometry Methodology), as Used to Create NHANES III Dataset 

  58. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Beck 15 12 2297 2000 10.1359/jbmr.2000.15.12.2297 Structural trends in the aging femoral neck and proximal shaft: analysis of the third National Health and Nutrition Examination Survey dual-energy X-ray absorptiometry data 

  59. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Beck 16 11 2103 2001 10.1359/jbmr.2001.16.11.2103 Effects of current and discontinued estrogen replacement therapy on hip structural geometry: the study of osteoporotic fractures 

  60. Osteoporosis International: A Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA Uusi-Rasi 17 4 575 2006 10.1007/s00198-005-0028-3 Structural effects of raloxifene on the proximal femur: results from the multiple outcomes of raloxifene evaluation trial 

  61. Osteoporosis International: A Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA Bonnick 20 6 911 2009 10.1007/s00198-008-0762-4 DXA-based hip structural analysis of once-weekly bisphosphonate-treated postmenopausal women with low bone mass 

  62. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Greenspan 20 9 1525 2005 10.1359/JBMR.050508 Effect of hormone replacement, alendronate, or combination therapy on hip structural geometry: a 3-year, double-blind, placebo-controlled clinical trial 

  63. Bone Uusi-Rasi 36 6 948 2005 10.1016/j.bone.2005.03.003 Effects of teriparatide [rhPTH (1-34)] treatment on structural geometry of the proximal femur in elderly osteoporotic women 

  64. Journal of Clinical Densitometry: The Official Journal of the International Society for Clinical Densitometry Beck 11 3 351 2008 10.1016/j.jocd.2008.04.001 Effects of denosumab on the geometry of the proximal femur in postmenopausal women in comparison with alendronate 

  65. N. Engl. J. Med. McClung 354 8 821 2006 10.1056/NEJMoa044459 Denosumab in postmenopausal women with low bone mineral density 

  66. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Lewiecki 22 12 1832 2007 10.1359/jbmr.070809 Two-year treatment with denosumab (AMG 162) in a randomized phase 2 study of postmenopausal women with low BMD 

  67. Engelke Vol. 2 1926 2008 Principles of Bone Biology Macro- and microimaging of bone architecture 

  68. J. Biomech. Eng. Lotz 113 4 361 1991 10.1115/1.2895413 Fracture prediction for the proximal femur using finite element models: part I - linear analysis 

  69. J. Biomech. Eng. Lotz 113 4 353 1991 10.1115/1.2895412 Fracture prediction for the proximal femur using finite element models: part II - nonlinear analysis 

  70. Radiology Faulkner 179 3 669 1991 10.1148/radiology.179.3.2027972 Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis 

  71. Ann. N. Y. Acad. Sci. Keaveny 1192 57 2010 10.1111/j.1749-6632.2009.05348.x Biomechanical computed tomography-noninvasive bone strength analysis using clinical computed tomography scans 

  72. J. Biomech. Cody 32 10 1013 1999 10.1016/S0021-9290(99)00099-8 Femoral strength is better predicted by finite element models than QCT and DXA 

  73. Comput. Methods Prog. Biomed. Testi 60 1 23 1999 10.1016/S0169-2607(99)00007-3 Risk of fracture in elderly patients: a new predictive index based on bone mineral density and finite element analysis 

  74. International Journal for Numerical Methods in Biomedical Engineering Luo 29 5 615 2013 10.1002/cnm.2548 Precision study of DXA-based patient-specific finite element modeling for assessing hip fracture risk 

  75. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Naylor 28 5 1014 2013 10.1002/jbmr.1856 Use of DXA-based finite element analysis of the proximal femur in a longitudinal study of hip fracture 

  76. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. McCloskey 22 1 135 2007 10.1359/jbmr.061008 Clodronate reduces the incidence of fractures in community-dwelling elderly women unselected for osteoporosis: results of a double-blind, placebo-controlled randomized study 

  77. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Yang 24 1 33 2009 10.1359/jbmr.080906 Use of DXA-based structural engineering models of the proximal femur to discriminate hip fracture 

  78. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Yang 29 12 2594 2014 10.1002/jbmr.2291 Prediction of incident hip fracture with the estimated femoral strength by finite element analysis of DXA scans in the study of osteoporotic fractures 

  79. Biomed. Mater. Eng. Ferdous 25 2 213 2015 Study of hip fracture risk by DXA-based patient-specific finite element model 

  80. Med. Image Anal. Väänänen 24 1 125 2015 10.1016/j.media.2015.06.001 Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image 

  81. J. Mech. Behav. Biomed. Mater. Dall'Ara 63 17 2016 10.1016/j.jmbbm.2016.06.004 Experimental validation of DXA-based finite element models for prediction of femoral strength 

  82. N. Engl. J. Med. Cummings 332 12 767 1995 10.1056/NEJM199503233321202 Risk factors for hip fracture in white women. Study of osteoporotic fractures research group 

  83. Osteoporosis International: A Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA De Laet 16 11 1330 2005 10.1007/s00198-005-1863-y Body mass index as a predictor of fracture risk: a meta-analysis 

  84. J. Intern. Med. Kawai 272 4 317 2012 10.1111/j.1365-2796.2012.02564.x New insights into osteoporosis: the bone-fat connection 

  85. Lancet Diabetes Endocrinol. Devlin 3 2 141 2015 10.1016/S2213-8587(14)70007-5 The bone-fat interface: basic and clinical implications of marrow adiposity 

  86. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Nielson 26 3 496 2011 10.1002/jbmr.235 BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS) 

  87. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society Robinovitch 13 6 956 1995 10.1002/jor.1100130621 Force attenuation in trochanteric soft tissues during impact from a fall 

  88. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Bouxsein 22 6 825 2007 10.1359/jbmr.070309 Contribution of trochanteric soft tissues to fall force estimates, the factor of risk, and prediction of hip fracture risk 

  89. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Lang 25 3 513 2010 10.1359/jbmr.090807 Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study 

  90. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Malkov 30 8 1414 2015 10.1002/jbmr.2469 Hip fractures risk in older men and women associated with DXA-derived measures of thigh subcutaneous fat thickness, cross-sectional muscle area, and muscle density 

  91. J. Clin. Endocrinol. Metab. Odvina 90 3 1294 2005 10.1210/jc.2004-0952 Severely suppressed bone turnover: a potential complication of alendronate therapy 

  92. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Khosla 22 10 1479 2007 10.1359/jbmr.0707onj Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research 

  93. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Shane 25 11 2267 2010 10.1002/jbmr.253 Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research 

  94. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Shane 29 1 1 2014 10.1002/jbmr.1998 Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research 

  95. Kolata 2016 Fearing Drugs' Rare Side Effects, Millions Take Their Chances With Osteoporosis 

  96. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Khosla 31 8 1485 2016 10.1002/jbmr.2888 A crisis in the treatment of osteoporosis 

  97. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Mahjoub 31 4 767 2016 10.1002/jbmr.2748 Incidence and characteristics of atypical femoral fractures: clinical and geometrical data 

  98. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Niimi 30 2 225 2015 10.1002/jbmr.2345 Cortical thickness of the femur and long-term bisphosphonate use 

  99. Journal of Clinical Densitometry: The Official Journal of the International Society for Clinical Densitometry McKiernan 13 1 102 2010 10.1016/j.jocd.2009.11.002 Atypical femoral diaphyseal fractures documented by serial DXA 

  100. Journal of Clinical Densitometry: The Official Journal of the International Society for Clinical Densitometry McKiernan 14 3 354 2011 10.1016/j.jocd.2011.04.004 A long femur scan field does not alter proximal femur bone mineral density measurements by dual-energy X-ray absorptiometry 

  101. J. Clin. Densitom. van der Kamp 3 16 262 2013 10.1016/j.jocd.2013.05.004 Early diagnosis of atypical femoral fracture (AFF) at time of dual energy X-ray absorptiometry (DXA) scan 

  102. Journal of Clinical Densitometry: The Official Journal of the International Society for Clinical Densitometry McKenna 16 4 579 2013 10.1016/j.jocd.2013.06.004 Incomplete atypical femoral fractures: assessing the diagnostic utility of DXA by extending femur length 

  103. Khosla 119 2016 What Can We Do About It. Lecture presented at the ASBMR, Onsite Program 

  104. Khosla, S. (Presenter) (2016). Call to Action to Address the Crisis in the Treatment of Osteoporosis, ASBMR, [Webinar]. (December 6, 2016). 

  105. Khosla, S. (Presenter). Addressing the Treatment Gap in Osteoporosis. (December, 19, 2016). (Presented at the Federal Working Group on Bone Disease). 

  106. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. Khosla 2016 10.1002/jbmr.2888 Addressing the crisis in the treatment of osteoporosis: a path forward 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로