$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Biogenic synthesis, characterisation and antifungal activity of gum kondagogu-silver nano bio composite construct: assessment of its mode of action 원문보기

IET nanobiotechnology, v.11 no.7, 2017년, pp.866 - 873  

Malkapur, Dakshayani (University College of Science, Osmania University, India) ,  Devi, Manju S. (University College of Science, Osmania University, India) ,  Rupula, Karuna (University College of Science, Osmania University, India) ,  Sashidhar, R.B.

Abstract AI-Helper 아이콘AI-Helper

The biogenic synthesis of silver nanoparticles was achieved by using gum kondagogu (Cochlospermum gossypium), a natural biopolymer (Gk-AgNPs). Synthesised nanoparticles were characterised by using UV–visible spectroscopy, inductively coupled plasma-atomic emission spectrometer, X-ray diffract...

참고문헌 (48)

  1. Jaiswal, Swarna, Duffy, Brendan, Jaiswal, Amit Kumar, Stobie, Niall, McHale, Patrick. Enhancement of the antibacterial properties of silver nanoparticles using β-cyclodextrin as a capping agent. International journal of antimicrobial agents, vol.36, no.3, 280-283.

  2. Singh, R., Nawale, L.U., Arkile, M., Shedbalkar, U.U., Wadhwani, S.A., Sarkar, D., Chopade, B.A.. Chemical and biological metal nanoparticles as antimycobacterial agents: A comparative study. International journal of antimicrobial agents, vol.46, no.2, 183-188.

  3. Paphitou, N.I.. Antimicrobial resistance: action to combat the rising microbial challenges. International journal of antimicrobial agents, vol.42, no.suppl1, S25-S28.

  4. Fisher, Matthew C., Henk, Daniel. A., Briggs, Cheryl J., Brownstein, John S., Madoff, Lawrence C., McCraw, Sarah L., Gurr, Sarah J.. Emerging fungal threats to animal, plant and ecosystem health. Nature, vol.484, no.7393, 186-194.

  5. Bennett, J. W., Klich, M.. Mycotoxins. Clinical microbiology reviews, vol.16, no.3, 497-516.

  6. Pfaller, Michael A.. Antifungal Drug Resistance: Mechanisms, Epidemiology, and Consequences for Treatment. The American journal of medicine, vol.125, no.1, S3-S13.

  7. Srikar, Sista Kameswara, Giri, Deen Dayal, Pal, Dan Bahadur, Mishra, Pradeep Kumar, Upadhyay, Siddh Nath. Green Synthesis of Silver Nanoparticles: A Review. Green and sustainable chemistry, vol.6, no.1, 34-56.

  8. Vinod, V.T.P., Sashidhar, R.B., Suresh, K.I., Rama Rao, B., Vijaya Saradhi, U.V.R., Prabhakar Rao, T.. Morphological, physico-chemical and structural characterization of gum kondagogu (Cochlospermum gossypium): A tree gum from India. Food hydrocolloids, vol.22, no.5, 899-915.

  9. Polysaccharides (bioactivity and biotechnology) Sashidhar R.B. 185 2015 10.1007/978-3-319-16298-0_32 

  10. Kora, A.J., Sashidhar, R.B., Arunachalam, J.. Gum kondagogu (Cochlospermum gossypium): A template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydrate polymers, vol.82, no.3, 670-679.

  11. Lee, Dong Gun, Kim, Hyung Keun, Kim, Sun Am, Park, Yoonkyung, Park, Seong-Cheol, Jang, Seung-Hwan, Hahm, Kyung-Soo. Fungicidal effect of indolicidin and its interaction with phospholipid membranes. Biochemical and biophysical research communications, vol.305, no.2, 305-310.

  12. Sondi, Ivan, Salopek-Sondi, Branka. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science, vol.275, no.1, 177-182.

  13. Liu, Hui, Du, Yumin, Wang, Xiaohui, Sun, Liping. Chitosan kills bacteria through cell membrane damage. International journal of food microbiology, vol.95, no.2, 147-155.

  14. Curr. Sci. Tiwari D.K. 647 95 2008 Time and dose­dependent antimicrobial potential of ag nanoparticles synthesized by top down approach 

  15. Choi, Okkyoung, Hu, Zhiqiang. Size Dependent and Reactive Oxygen Species Related Nanosilver Toxicity to Nitrifying Bacteria. Environmental science & technology, vol.42, no.12, 4583-4588.

  16. Heath, Robert L., Packer, Lester. Photoperoxidation in isolated chloroplasts. Archives of biochemistry and biophysics, vol.125, no.1, 189-198.

  17. Jayashree, T., Subramanyam, C.. Antiaflatoxigenic activity of eugenol is due to inhibition of lipid peroxidation. Letters in applied microbiology, vol.28, no.3, 179-183.

  18. Lawrence, Richard A., Burk, Raymond F.. Glutathione peroxidase activity in selenium-deficient rat liver. Biochemical and biophysical research communications, vol.71, no.4, 952-958.

  19. MARKLUND, Stefan, MARKLUND, Gudrun. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. European journal of biochemistry, vol.47, no.3, 469-474.

  20. CRC handbook of methods for oxygen radical research Claiborne A. 283 1985 

  21. 10.1159/000136485 

  22. Lowry, OliverH., Rosebrough, NiraJ., Farr, A. Lewis, Randall, RoseJ.. PROTEIN MEASUREMENT WITH THE FOLIN PHENOL REAGENT. The Journal of biological chemistry, vol.193, no.1, 265-275.

  23. Galib, Barve, Mayur, Mashru, Mayur, Jagtap, Chandrashekhar, Patgiri, B. J., Prajapati, P. K.. Therapeutic potentials of metals in ancient India: A review through Charaka Samhita. Journal of Ayurveda and integrative medicine, vol.2, no.2, 55-63.

  24. Curr. Nanomed. (Formerly: Recent Patents on Nanomedicine) Kar Mahapatra D. 5 7 1 2017 10.2174/2468187306666160927122028 Nature inspired green fabrication technology for silver nanoparticles 

  25. Int. J. Mater. Sci. Appl. Natsuki J. 325 4 2015 A review of silver nanoparticles: synthesis methods, properties and applications 

  26. Spectrosc. Lett. Akrema 268 49 2016 10.1080/00387010.2016.1140654 Extracellular synthesis of silver dimer nanoparticles using Callistemon viminalis (Bottlebrush) extract and evaluation of their antibacterial activity 

  27. Marambio-Jones, Catalina, Hoek, Eric M. V.. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, vol.12, no.5, 1531-1551.

  28. Bioinorg. Chem. Appl. Kumar B. 8 2014 2014 10.1155/2014/784268 Sonochemical synthesis of silver nanoparticles using starch: a comparison 

  29. Philip, D.. Mangifera Indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, vol.78, no.1, 327-331.

  30. J. Nanoparticle Res. Sarwar A. 2517 16 7 2014 10.1007/s11051-014-2517-9 Antibacterial effects of chitosan-tripolyphosphate nanoparticles: impact of particle size molecular weight 

  31. Kim, Keuk-Jun, Sung, Woo Sang, Suh, Bo Kyoung, Moon, Seok-Ki, Choi, Jong-Soo, Kim, Jong Guk, Lee, Dong Gun. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine, vol.22, no.2, 235-242.

  32. J. Microbiol. Biotechnol. Kim K.J. 1482 18 2008 Antifungal effect of silver nanoparticles on dermatophytes 

  33. Monteiro, D. R., Gorup, L. F., Silva, S., Negri, M., de Camargo, E. R., Oliveira, R., Barbosa, D. B., Henriques, M.. Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms ofCandida albicansandCandida glabrata. Biofouling, vol.27, no.7, 711-719.

  34. Kim, Sumin, Kim, Hyun-Joong. Anti-bacterial performance of colloidal silver-treated laminate wood flooring. International biodeterioration & biodegradation, vol.57, no.3, 155-162.

  35. PLoS ONE Vazquez­Munoz R. 9 10 2014 10.1371/journal.pone.0108876 Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles 

  36. Lamsal, Kabir, Kim, Sang-Woo, Jung, Jin-Hee, Kim, Yun-Seok, Kim, Kyoung-Su, Lee, Youn-Su. Inhibition Effects of Silver Nanoparticles against Powdery Mildews on Cucumber and Pumpkin. Mycobiology, vol.39, no.1, 26-32.

  37. Krishnaraj, Chandran, Harper, Stacey L., Choe, Ho Sung, Kim, Kwang-Pyo, Yun, Soon-Il. Mechanistic aspects of biologically synthesized silver nanoparticles against food- and water-borne microbes. Bioprocess and biosystems engineering, vol.38, no.10, 1943-1958.

  38. Carbohydr. Polym. Kanmani P. 421 97 1879 2013 10.1016/j.carbpol.2013.04.048 Synthesis and characterization of pullulan­mediated silver nanoparticles and its antimicrobial activities 

  39. Rastogi, Lori, Kora, Aruna Jyothi, Sashidhar, R. B.. Antibacterial effects of gum kondagogu reduced/stabilized silver nanoparticles in combination with various antibiotics: a mechanistic approach. Applied nanoscience, vol.5, no.5, 535-543.

  40. Hwang, In‐sok, Lee, Juneyoung, Hwang, Ji Hong, Kim, Keuk‐Jun, Lee, Dong Gun. Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. The FEBS journal, vol.279, no.7, 1327-1338.

  41. Manke, Amruta, Wang, Liying, Rojanasakul, Yon. Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity. BioMed research international, vol.2013, 942916-.

  42. Matsumura, Yoshinobu, Yoshikata, Kuniaki, Kunisaki, Shin-ichi, Tsuchido, Tetsuaki. Mode of Bactericidal Action of Silver Zeolite and Its Comparison with That of Silver Nitrate. Applied and environmental microbiology, vol.69, no.7, 4278-4281.

  43. 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3 

  44. Hwang, Ee Taek, Lee, Jin Hyung, Chae, Yun Ju, Kim, Yeon Seok, Kim, Byoung Chan, Sang, Byoung-In, Gu, Man Bock. Analysis of the Toxic Mode of Action of Silver Nanoparticles Using Stress-Specific Bioluminescent Bacteria. Small, vol.4, no.6, 746-750.

  45. Buzea, Cristina, Pacheco, Ivan I., Robbie, Kevin. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, vol.2, no.4, MR17-MR71.

  46. Angelova, Maria B., Pashova, Svetlana B., Spasova, Boryana K., Vassilev, Spassen V., Slokoska, Lyudmila S.. Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat. Mycological research, vol.109, no.2, 150-158.

  47. Patra, Prasun, Mitra, Shouvik, Debnath, Nitai, Goswami, Arunava. Biochemical-, Biophysical-, and Microarray-Based Antifungal Evaluation of the Buffer-Mediated Synthesized Nano Zinc Oxide: An in Vivo and in Vitro Toxicity Study. Langmuir : the ACS journal of surfaces and colloids, vol.28, no.49, 16966-16978.

  48. Arabian J. Chem Kora A.J. 2014 Biogenic silver nanoparticles synthesized with rhamnogalacturonan gum: antibacterial activity, cytotoxicity and its mode of action 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로