$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

논문 상세정보

Abstract

Abstract Space heating and cooling is one of the most relevant causes of energy consumption in both residential and tertiary sector buildings. In particular, service buildings and offices are mostly served by all-air HVAC systems in which control logics are fundamental to guarantee reliability and performance. Building automation systems are therefore becoming more and more relevant as a support tool for reducing the energy consumption in these contexts. For this reason, the detailed analysis of operational data from real units can help in understanding the main variables that affect the performance and functioning of all-air systems. This paper presents some results from operation data analysis of an Air Handling Unit (AHU) serving a large university classroom. The main drivers of the energy consumption are highlighted, and the classroom occupancy is found to have a significant importance in the energy balance of the system. The availability of historical operation data allows performing a comparison between the actual operation of the AHU and the expected performance from nominal parameters. An example of fault detection is proposed, considering the operation analysis of the heat recovery unit over different years.

  

참고문헌 (12)

  1. 1. 10.1016/j.engappai.2016.12.021 Verbert, K., Babu?ka, R., Schutter, B.D.. Combining knowledge and historical data for system-level fault diagnosis of {HVAC} systems. Engineering Applications of Artificial Intelligence 2017;59:260-273. URL: http://www.sciencedirect.com/science/article/pii/S095219761630255X. doi:http://dx.doi.org/10.1016/j.engappai.2016.12.021. 
  2. 2. 10.1016/j.autcon.2016.06.005 Yan, R., Ma, Z., Kokogiannakis, G., Zhao, Y.. A sensor fault detection strategy for air handling units using cluster analysis. Automation in Construction 2016;70:77-88. URL: http://www.sciencedirect.com/science/article/pii/S0926580516301261. doi:http://dx.doi.org/10.1016/j.autcon.2016.06.005. 
  3. 3. 10.1016/j.enbuild.2016.08.017 Dey, D., Dong, B.. A probabilistic approach to diagnose faults of air handling units in buildings. Energy and Buildings 2016;130:177-187. URL: http://www.sciencedirect.com/science/article/pii/S0378778816306958. doi:http://dx.doi.org/10.1016/j.enbuild.2016.08.017. 
  4. 4. 10.1016/j.enbuild.2013.02.006 Kusiak, A., Zeng, Y., Xu, G.. Minimizing energy consumption of an air handling unit with a computational intelligence approach. Energy and Buildings 2013;60:355-363. URL: http://www.sciencedirect.com/science/article/pii/S0378778813000741. doi:http://dx.doi.org/10.1016/j.enbuild.2013.02.006. 
  5. 5. 10.1016/j.proeng.2016.04.205 Cetin, K.S., Kallus, C.. Data-driven methodology for energy and peak load reduction of residential {HVAC} systems. Procedia Engineering 2016;145:852-859. URL: http://www.sciencedirect.com/science/article/pii/S1877705816302156. doi:http://dx.doi.org/10.1016/j.proeng.2016.04.205; {ICSDEC} 2016-Integrating Data Science, Construction and Sustainability. 
  6. 6. 10.1016/j.enbuild.2014.06.042 Yu, Y., Woradechjumroen, D., Yu, D.. A review of fault detection and diagnosis methodologies on air-handling units. Energy and Buildings 2014;82:550-562. URL: http://www.sciencedirect.com/science/article/pii/S0378778814005246. doi:https://doi.org/10.1016/j.enbuild.2014.06.042. 
  7. 7. Najafi, M., Auslander, D.M., Bartlett, P.L., Haves, P., Sohn, M.D.. Application of machine learning in the fault diagnostics of air handling units. Applied Energy 2012;96:347-358. URL: http://www.sciencedirect.com/science/article/pii/S0306261912001481. doi:https://doi.org/10.1016/j.apenergy.2012.02.049; smart Grids. 
  8. 8. 10.1016/j.enbuild.2013.12.038 Du, Z., Fan, B., Chi, J., Jin, X.. Sensor fault detection and its efficiency analysis in air handling unit using the combined neural networks. Energy and Buildings 2014;72:157-166. URL: http://www.sciencedirect.com/science/article/pii/S0378778813008554. doi:https://doi.org/10.1016/j.enbuild.2013.12.038. 
  9. 9. 10.1080/00031305.1978.10479236 McGill, R., Tukey, J.W., Larsen, W.A.. Variations of box plots. The American Statistician 1978;32(1):12-16. URL: http://www.jstor.org/stable/2683468. 
  10. 10. 10.1016/0306-2619(87)90012-2 Hammarsten, S.. A critical appraisal of energy-signature models. Applied Energy 1987;26(2):97-110. URL: https://ideas.repec.org/a/eee/appene/v26y1987i2p97-110.html. 
  11. 11. ANSI/ASHRAE standard 55-2013, thermal environmental conditions for human occupancy. 2013. 
  12. 12. ISO 7730:2005, ergonomics of the thermal environment-analytical determination and interpretation of thermal comfort using calculation of the pmv and ppd indices and local thermal comfort criteria. 2005. 

DOI 인용 스타일

"" 핵심어 질의응답