$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A reference architecture for the integration of automated energy performance fault diagnosis into HVAC systems

Energy and buildings, v.179, 2018년, pp.144 - 155  

Taal, Arie (Department of Mechanical Engineering, The Hague University of Applied Sciences) ,  Itard, Laure (Faculty of Architecture and the Built Environment, Delft University of Technology) ,  Zeiler, Wim (Faculty of the Built Environment, Eindhoven University of Technology)

Abstract AI-Helper 아이콘AI-Helper

Abstract Automated energy performance diagnosis systems are seldom applied in practice, leading to excessive energy use and poor indoor environment. One reason for this is that HVAC and energy performance diagnosis systems are designed separately by different experts. Current frameworks for energy ...

주제어

참고문헌 (61)

  1. Energy performance of buildings - Overarching EPB assessment - Part 1: General framework and procedures ISO/WD 52000-1, 2015. https://ec.europa.eu/energy/en/topics/energy-efficiency/buildings. [accessed 17.03.17]. 

  2. Autom. Construct. de Wilde 41 40 2014 10.1016/j.autcon.2014.02.009 The gap between predicted and measured energy performance of buildings: a framework for investigation 

  3. Front. Mech. Eng. van Dronkelaar 1 17 2016 10.3389/fmech.2015.00017 A review of the regulatory energy performance gap and its underlying causes in non-domestic buildings 

  4. Calif. Energy Comm. Mills 2009 A golden opportunity for reducing energy costs and greenhouse gas emissions 

  5. Energy Build. Jing 144 117 2017 10.1016/j.enbuild.2017.03.042 A study on energy performance of 30 commercial office buildings in Hong Kong 

  6. Renew. Sustain. Energy Rev. Djuric 13 486 2009 10.1016/j.rser.2007.11.007 Review of possibilities and necessities for building lifetime commissioning 

  7. Renew. Sustain. Energy Rev. Verhelst 76 673 2017 10.1016/j.rser.2017.01.119 Model selection for continuous commissioning of HVAC-systems in office buildings: a review 

  8. Energy Procedia Kallab 122 895 2017 10.1016/j.egypro.2017.07.399 HIT2GAP: towards a better building energy management 

  9. Build. Environ. Wu 46 1558 2011 10.1016/j.buildenv.2011.01.017 Cross-level fault detection and diagnostics of building HVAC systems 

  10. RP1026: Evaluation of Next-Generation Automated Fault Detection & Diagnosis (FDD) tools for Commercial Building Energy Efficiency, Part I: FDD Case Studies in Australia. 2018. Low Carbon Living, CRC. 

  11. Sci. Technol. Built Environ. Kim 24 1 3 2018 10.1080/23744731.2017.1318008 A review of fault detection and diagnostics methods for building systems 

  12. Am. Soc. Heat. Refrig. Air Cond. Eng. 2012 ASHRAE handbook, HVAC systems and equipment 

  13. 2007 Air-Conditioning System Design Manual 

  14. IEA 2006 Computer aided evaluation of HVAC system performance 

  15. IEA ECBS Annex 40. Commissioning of Building HVAC Systems for Improving Energy Performance. http://www.buildup.eu/en/explore/links/iea-ecbcs-annex-40-commissioning-building-hvac-systems-improving-energy-performance [accessed 28.03.2018]. 

  16. IEA ECBS Annex 47. Cost Effective Commissioning of Existing and Low Energy Buildings. http://www.iea-annex47.org [accessed 28.03.2018]. 

  17. Energy Build. Yoshino 152 124 2017 10.1016/j.enbuild.2017.07.038 IEA EBC annex 53: total energy use in buildings-analysis and evaluation methods 

  18. Annex 58 Reliable Building Energy Performance Characterization Based on Full Scale Dynamic Measurements, IEA. 

  19. BuildingEQ. http://www.buildingeq.eu [accessed 19.03.2018]. 

  20. 10.1007/978-3-319-02332-8_5 G. Anzaldi, A. Corchero, H. Wicaksono, K. McGlinn, A. Gerdelan, M. Dibley. Knoholem: Knowledge-Based Energy Management for Public Buildings Through Holistic Information Modeling and 3D Visualization. doi:10.1007/978-3-319-02332-8_5. 

  21. Energy Build. Wang 55 873 2012 10.1016/j.enbuild.2012.08.037 Quantitative energy performance assessment methods for existing buildings 

  22. Appl. Energy Chung 88 1470 2011 10.1016/j.apenergy.2010.11.022 Review of building energy-use performance benchmarking methodologies 

  23. Appl. Energy Li 124 325 2014 10.1016/j.apenergy.2014.03.020 Methods for benchmarking building energy consumption against its past or intended performance: an review 

  24. Energy Build. Borgstein 128 734 2016 10.1016/j.enbuild.2016.07.018 Evaluating energy performance in non-domestic buildings: a review 

  25. Renew. Sustain. Energy Rev. Wei 82 1027 2018 10.1016/j.rser.2017.09.108 A review of data-driven approaches for prediction and classification of building energy consumption 

  26. HVAC&R Res. Katipamula 11 3 2005 10.1080/10789669.2005.10391123 Methods for fault detection, diagnostics, and prognostics for building systems - a review, Part I 

  27. HVAC&R Res. Katipamula 11 169 2005 10.1080/10789669.2005.10391133 Methods for fault detection, diagnostics, and prognostics for building systems - a review, Part II 

  28. Energy Build. Cho 80 169 2014 10.1016/j.enbuild.2014.04.046 Development of an energy evaluation methodology to make multiple predictions of HVAC&R system energy demand for office buildings 

  29. Build. Environ. Maile 56 241 2012 10.1016/j.buildenv.2012.03.012 A method to compare simulated and measured data to assess building energy performance 

  30. Appl. Energy Wang 169 14 2016 10.1016/j.apenergy.2016.01.054 Methodology of comprehensive building energy performance diagnosis for large commercial buildings at multiple levels 

  31. Choiniere 2008 Proceedings of the National Conference on Building Commissioning A BEMS assisted on-going commissioning tool 

  32. Energy Build. Belussi 55 715 2012 10.1016/j.enbuild.2012.09.003 Method for the prediction of malfunctions of buildings through real energy consumption analysis: Holistic and multidisciplinary approach of energy signature 

  33. Appl. Energy Costa 101 2013 10.1016/j.apenergy.2011.10.037 Building operation and energy performance: monitoring, analysis and optimization toolkit 

  34. Energy Build. Hitchin 112 101 2016 10.1016/j.enbuild.2015.11.059 Daily energy consumption signatures and control charts for air-conditioned buildings 

  35. Energy Build. Zhao 66 41 2013 10.1016/j.enbuild.2013.07.007 Development of an energy monitoring system for large public buildings 

  36. Energy Build. Bynum 55 607 2012 10.1016/j.enbuild.2012.08.038 Development and testing of an automated building commissioning analysis tool (ABCAT) 

  37. Appl. Thermal Eng. Xiao 29 712 2009 10.1016/j.applthermaleng.2008.03.046 An isolation enhanced PCA method with expert-based multivariate decoupling for sensor FDD in air-conditioning systems 

  38. Appl. Thermal Eng. Guo 115 744 2017 10.1016/j.applthermaleng.2017.01.008 Modularized PCA method combined with expert-based multivariate decoupling for FDD in VRF systems including indoor unit faults 

  39. Build. Environ. Du 73 1 2014 10.1016/j.buildenv.2013.11.021 Fault detection and diagnosis for buildings and HVAC systems using combined neural networks and subtractive clustering analysis 

  40. Appl. Energy Lee 77 153 2004 10.1016/S0306-2619(03)00107-7 Subsystem level fault diagnosis of a building's air-handling unit using general regression neural networks 

  41. 10.1016/j.applthermaleng.2016.07.109 K. Sun, G. Li, H. Chen, J. Liu, J. Li, W. Hu, A novel efficient SVM-based fault diagnosis method for multi-split air conditioning system's refrigerant charge fault amount, Appl. Thermal Eng. 108, 2016, 989-998. doi:10.1016/j.applthermaleng.2016.07.109. 

  42. Appl. Thermal Eng. Han 31 582 2011 10.1016/j.applthermaleng.2010.10.021 Study on a hybrid SVM model for chiller FDD applications 

  43. Energy Lund 68 1 2014 10.1016/j.energy.2014.02.089 4th generation district heating (4GDH): integrating smart thermal grids into future sustainable energy systems 

  44. Renew. Sustain. Energy Rev. Tuballa 59 710 2016 10.1016/j.rser.2016.01.011 A review of the development of smart grid technologies 

  45. Renew. Energy Navarro 88 526 2016 10.1016/j.renene.2015.11.040 Thermal energy storage in building integrated thermal systems: a review. Part 1. active storage system 

  46. Renew. Sustain. Energy Rev. Fleuchaus 94 861 2018 10.1016/j.rser.2018.06.057 Worldwide application of aquifer thermal energy storage - a review 

  47. Renew. Sustain. Energy Rev. Kasalinis 25 483 2013 10.1016/j.rser.2013.04.016 Climate adaptive building shells: State-of-the-art and future challenges 

  48. ISSO-publicatie 44. Het ontwerp van hydraulische schakelingen voor verwarmen. ISSO. 1998. ISBN: 978-90-5044-064-6. 

  49. ISSO-publicatie 47. Ontwerp van hydraulische schakelingen voor koelen. ISSO. 2013. ISBN: 978-90-5044-112-4. 

  50. Energy Build. Djuric 42 510 2010 10.1016/j.enbuild.2009.10.020 Correlation between standards and the lifetime commission 

  51. prEN 15603:2013:E, Energy performance of Buildings - Overarching standard EPBD, CEN. 

  52. K.L. Gillespie, P. Haves, R.J. Hitchcock, J. Deringer, K.L. Kinney. A Specifications Guide for Performance Monitoring Systems. https://buildingdata.energy.gov/cbrd/resource/795. [accessed 29.03.2018]. 

  53. Barley 2005 

  54. HVAC&R Res. Wang 5 4 353 1999 10.1080/10789669.1999.10391243 Law-based sensor fault diagnosis and validation for building air-conditioning systems 

  55. Lucas 73 2001 Proceedings of the EUNITE Workshop on Intelligent Systems in Patient Care Bayesian networks in medicine: a model-based approach to medical decision making 

  56. Stud. Health Technol. Inform. Zogarecki 192 461 2013 A system for automated general medical diagnosis using Bayesian networks 

  57. Autom. Construct. Xiao 41 106 2014 10.1016/j.autcon.2013.10.019 Bayesian network based FDD strategy for variable air volume terminals 

  58. Appl. Thermal Eng. Zhao 90 145 2015 10.1016/j.applthermaleng.2015.07.001 Diagnostic Bayesian networks for diagnosing air handling units faults - Part II: faults in coils and sensors 

  59. Eng. Appl. Artif. Intell. Verbert 59 260 2017 10.1016/j.engappai.2016.12.021 Combining knowledge and historical data for system-level fault diagnosis of HVAC systems 

  60. Energy Build. Hu 158 668 2018 10.1016/j.enbuild.2017.10.012 A machine learning Bayesian network for refrigerant charge faults of variable refrigerant flow air conditioning system 

  61. GeNie 2.1, BayesFusion. 2016. [accessed 21.04.16]. http://download.bayesfusion.com. 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로