$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Biochar and biochar with N-fertilizer affect soil N2O emission in Haplic Luvisol 원문보기

Biológia, v.72 no.9, 2017년, pp.995 - 1001  

Horák, Ján (Department of Biometeorology and Hydrology , Horticulture and Landscape Engineering Faculty , Slovak University of Agriculture in Nitra , Hospodá) ,  Kondrlová, Elena (rska 7, SK-94901 Nitra , Slovakia) ,  Igaz, Dušan (Department of Biometeorology and Hydrology , Horticulture and Landscape Engineering Faculty , Slovak University of Agriculture in Nitra , Hospodá) ,  Šimanský, Vladimír (rska 7, SK-94901 Nitra , Slovakia) ,  Felber, Raphael (Department of Soil Science, Faculty of Agrobiology and Food Resources , Slovak University of Agriculture , Tr. A. Hlinku 2, SK-94976 Nitra , Slovakia) ,  Lukac, Martin (Agroscope, Climate & Air Pollution , Reckenholzstrasse 191, 8046 Zü) ,  Balashov, Eugene V. (rich , Switzerland) ,  Buchkina, Natalya P. (School of Agriculture , Policy and Development , University of Reading , Reading RG66AR , UK) ,  Rizhiya, Elena Y. (Agrophysical Research Institute , Grazhdansky pr. 14, St . Petersburg , 195220 Russia) ,  Jankowski, Michal (Agrophysical Research Institute , Grazhdansky pr. 14, St . Petersburg , 195220 Russia)

Abstract

AbstractThe benefits of biochar application are well described in tropical soils, however there is a dearth of information on its effects in agricultural temperate soils. An interesting and little explored interaction may occur in an intensive agriculture setting; biochar addition may modify the effect of commonplace N-fertilization. We conducted a field experiment to study the effects of biochar application at the rate of 0, 10 and 20 t ha−1(B0, B10 and B20) in combination with 0, 40 and 80 kg N ha−1of N-fertilizer (N0, N40, N80). We followed nitrous oxide (N2O) emissions, analysed a series of soil physicochemical properties and measured barley yield in a Haplic Luvisol in Central Europe. Seasonal cumulativeN2Oemissions from B10N0 and B20N0 treatments decreased by 27 and 25% respectively, when compared to B0N0. CumulativeN2Oemissions from N40 and N80 combined with B10 and B20 were also lower by 21, 19 and 25, 32%, respectively compared to controls B0N40 and B0N80. AveragepHwas significantly increased by biochar addition. Increased soilpHand reduces[FORMULA OMISSION]content seen in biochar treatments could be the two possible mechanisms responsible for reducedN2Oemissions. There was a statistically significant increase of soil water content in B20N0 treatment compared to B0N0 control, possibly as a result of larger surface area and the presence of microspores having altered pore size distribution and water-holding capacity of the soil. Application of biochar at the rate of 10 t ha−1had a positive effect on spring barley grain yield.

주제어

참고문헌 (46)

  1. SciTot. Environ. G Agegnehu 543 295 2016 Agegnehu G., Bass A. M., Nelson P. N & Bird M. I. 2016. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. SciTot. Environ. 543: 295-306. 

  2. AgricEcosyst. Environ. G Agegnehu 213 72 2015 10.1016/j.agee.2015.07.027 Agegnehu G., Bass A. M., Nelson P. N., Muirhead B., Wright G. & Bird M. I. 2015. Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. AgricEcosyst. Environ. 213: 72-85. 

  3. AgricEcosyst. Environ. C R Anderson 191 63 2011 10.1016/j.agee.2014.02.021 Anderson C. R., Hamonts K., Clough T. J. & Condron L. M. 2011. Biochar does not affect soil N-transformations or mi-crobial community structure under ruminant urine patches but does alter relative proportions of nitrogen cycling bacteria. AgricEcosyst. Environ. 191: 63-72. 

  4. T Appel 2015 Understanding biochar mechanisms for practical implementation Appel T. & Klein B. 2015. Mineralization and immobilization of nitrogen in soil amended with biochar, compost and co-composted biochar, pp. 112-113. In: Understanding biochar mechanisms for practical implementation, Hochshule Geisen-heim University. 

  5. Plant Soil C J Atkinson 337 1 2010 10.1007/s11104-010-0464-5 Atkinson C. J., Fitzgerald J. D. & Hipps N. A. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337: 1-18. 

  6. ApplGeogr. C J Barrow 34 21 2012 Barrow C. J. 2012. Biochar: potential for countering land degradation and for improving agriculture. ApplGeogr. 34: 21-28. 

  7. Soil Biol. Biochem. S D C Case 51 125 2012 10.1016/j.soilbio.2012.03.017 Case S. D. C., McNamara N. P., Reay D. S. & Whitaker J. 2012. The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil-the role of soil aeration. Soil Biol. Biochem. 51: 125-134. 

  8. Chemosphere. S Castaldi 85 1464 2011 10.1016/j.chemosphere.2011.08.031 Castaldi S., Riondino M., Baronti S., Esposito F. R., Marzaioli R., Rutigliano F. A., Vaccari F.P. & Miglietta F. 2011. Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere. 85: 1464-1471. 

  9. AgrEcosyst. Environ. M L Cayuela Van 191 5 2014 10.1016/j.agee.2013.10.009 Cayuela M. L., Van Zwieten L., Singh B. P., Jeffery S., Roig A. & Sánchez-Monedero M. A. 2014. Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. AgrEcosyst. Environ. 191: 5-16. 

  10. Agronomy T J Clough 3 275 2013 10.3390/agronomy3020275 Clough T. J., Condron L. & Kammann Cand Müller C. 2013. A review of biochar and soil nitrogen dynamics. Agronomy 3: 275-93. 

  11. JHydrol. Hydromech. H Czachor 61 84 2013 10.2478/johh-2013-0011 Czachor H. & Lichner Ľ. 2013. Temperature influences water sorptivity of soil aggregates. JHydrol. Hydromech. 61: 84-87. 

  12. World Cong. Soil Sci. R Chintala 6 157 2014 Chintala R., Owen R., Kumar S., Schumacher T. E. & Malo D. 2014a. Biochar impacts on denitrification under different soil water contents. World Cong. Soil Sci. 6: 157-157. 

  13. J A Delgado 2010 Advances in nitrogen management for water quality Delgado J. A. & Follett R. F. 2010. Advances in nitrogen management for water quality. Soil Water Conservation Society, Ankeny, IA, 424 pp. 

  14. BioresourTechnol. D Fangueiro 99 7132 2008 10.1016/j.biortech.2007.12.069 Fangueiro D., Senbayran M., Trindade H. & Chadwick D. 2008. Cattle slurry treat-ment by screw press separation and chemically enhanced settling: effect ongreenhouse gas emissions after land spreading and grass yield. BioresourTechnol. 99: 7132-7142. 

  15. EurJ. Soil Sci. R Felber 65 128 2013 10.1111/ejss.12093 Felber R., Leifeld J., Horák J. and Neftel A. 2013. Nitrous oxide emission reduction with greenwaste biochar: comparison of laboratory and field experiments. EurJ. Soil Sci. 65: 128-138. 

  16. P Gruhn 2000 Food, agriculture, and the environment discussion paper 32, IFPRI, Washington, USA Gruhn P., Goletti F. & Yudelman M. 2000. Integrated nutrient management, soil fertility, and sustainable agriculture: current issues and future challenges, 38 pp. In: Food, agriculture, and the environment discussion paper 32, IFPRI, Washington, USA. 

  17. HGCA. 2005 The barley growth guide HGCA. 2005. The barley growth guide. https://doi.org/www.hgca.com. (accessed 07.07.2016). 

  18. Soil R Hüppi 1 707 2015 10.5194/soil-1-707-2015 Hüppi R., Felber R., Neftel A., Six J. & Leifeld J. 2015. Effect of biochar and liming on soil nitrous oxide emissions from a temperate maize cropping system. Soil 1: 707-717. 

  19. JEnviron. Qual. JA Ippolito 41 1123 2012 10.2134/jeq2011.0100 Ippolito J.A., Novak J.M., Busscher W.J., Ahmedna M., Rehrah D. & Watts D.W. 2012. Switchgrass biochar affects two Aridisols. JEnviron. Qual. 41: 1123-1130. 

  20. Soil Biol. Biochem. DL Jones 45 113 2012 10.1016/j.soilbio.2011.10.012 Jones D.L., Rousk J., Edwards-Jones G., DeLuca T.H. & Murphy D.V. 2012. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 45: 113-124. 

  21. AgrFood Sci. J Karer 22 390 2013 Karer J., Wimmer B., Zehetner F., Kloss S. & Soja G. 2013. Biochar application to temperate soils: effects on nutrient uptake and crop yield under field conditions. AgrFood Sci. 22: 390-403. 

  22. AgrEcosyst. Environ. K Karhu 140 309 2011 10.1016/j.agee.2010.12.005 Karhu K., Mattila T., Bergstroem I. & Regina K. 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - Results from a short-term pilot field study. AgrEcosyst. Environ. 140: 309-313. 

  23. Geoderma D Laird 158 436 2010 10.1016/j.geoderma.2010.05.012 Laird D., Fleming P., Wang B., Horton R. & Karlen D. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158: 436-442. 

  24. AgronSust. Develop. R Lal 29 113 2009 Lal R. 2009. Soils and food sufficiency. A review. AgronSust. Develop. 29: 113-133. 

  25. JHydrol. Hydromech. DAL Leelamanie 62 309 2014 10.2478/johh-2014-0040 Leelamanie D.A.L. 2014. Initial water repellency affected organic matter depletion rates of manure amended soils in Sri Lanka. JHydrol. Hydromech. 62: 309-315. 

  26. MitigAdapt. StratGlob. Change. J Lehmann 11 395 2006 Lehmann J., Gaunt J. & Rondon M. 2006. Bio-char sequestration in terrestrial ecosystems-a review. MitigAdapt. StratGlob. Change. 11: 395-419. 

  27. Soil Biol. Biochem. J Lehmann 43 1812 2011 10.1016/j.soilbio.2011.04.022 Lehmann J., Rillig M.C., Thies J., Masiell C.A., Hockaday W.C. & Crowley D. 2011. Biochar effects on soil biota, A review. Soil Biol. Biochem. 43: 1812-1836. 

  28. Soil Sci. SocAm. J. B Liang 70 1719 2006 10.2136/sssaj2005.0383 Liang B., Lehmann J., Solomon D., Kinyangi J., Grossman J., O’Neill B., Skjemstad J.O., Thies J., Luizăo F. J., Petersen J. & Neves E.G. 2006. Black carbon increases cation exchange capacity in soils. Soil Sci. SocAm. J. 70: 1719-1730. 

  29. JHydrol. Hydromech. TDP Liyanage 64 160 2016 10.1515/johh-2016-0025 Liyanage T.D.P. & Leelamanie D.A.L. 2016. Influence of organic manure amendments on water repellency, water entry value, and water retention of soil samples from a tropical Ultisol. JHydrol. Hydromech. 64: 160-166. 

  30. Geoderma E Liu 150 173 2010 10.1016/j.geoderma.2010.04.029 Liu E., Changrong Y., Xurong M., Wenqing H., So H. B., Lin-ping D., Qin L., Shuang L. & Tinglu F. 2010. Long term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in north-west China. Geoderma 150: 173-180. 

  31. EcolEng. XY Liu 42 168 2012 Liu X.Y., Qu J. J., Li L.Q., Zhang A.F., Jufeng Z., Zheng J.W. & Pan G.X. 2012. Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies? - A cross site field experiment from South China. EcolEng. 42: 168-173. 

  32. EuropJ. Agronomy V Nelissen 62 65 2015 10.1016/j.eja.2014.09.006 Nelissen V., Ruysschaert G., Manka’Abusi D., D’Hose T., De Beuf K., Al-Barri B., Cornelis W. & Boeckx P. 2015. Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment. EuropJ. Agronomy 62: 65-78. 

  33. JEnviron. Qual. RW Schnell 41 1044 2012 10.2134/jeq2011.0077 Schnell R.W., Vietor D.M., Provin T.L., Munster C.L. & Ca-pareda S. 2012. Capacity of biochar application to maintain energy crop productivity: soil chem-istry, sorghum growth, and runoff water quality effects. JEnviron. Qual. 41: 1044-1051. 

  34. AgrEcosyst. Environ. J Shen 188 264 2014 10.1016/j.agee.2014.03.002 Shen J., Tang H., Liu J., Wang C., Li Y., Ge T., Jones D. L. & Wu J. 2014. Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems. AgrEcosyst. Environ. 188: 264-274. 

  35. EuroJ. Soil Sci. M Simek 53 345 2002 10.1046/j.1365-2389.2002.00461.x Simek M. & Cooper J.E. 2002. The influence of soil pH on deni-trification: progress towards the understanding of this interaction over the last 50 years. EuroJ. Soil Sci. 53: 345-354. 

  36. JEnviron. Qual. B P Singh 39 1224 2010 10.2134/jeq2009.0138 Singh B. P., Hatton B.J., Singh B., Cowie A.L. & Kathuria A. 2010. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. JEnviron. Qual. 39: 1224-1235. 

  37. Plant Soil. C Steiner 291 275 2007 10.1007/s11104-007-9193-9 Steiner C., Teixeira W.G., Lehmann J. & Zech W. 2007. Long term effects of manure, charcoaland mineral fertilization on crop production and fertility on a highly weathered central amazonian upland soil. Plant Soil. 291: 275-290. 

  38. SciTotal Environ. EC Suddick 65 298 2013 Suddick E.C. & Six J. 2013. An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation. SciTotal Environ. 65: 298-307. 

  39. MA Sutton 2011 The European nitrogen assessment 10.1017/CBO9780511976988 Sutton M.A. & van Grinsven H. 2011. The European nitrogen assessment. Sources, effects, and policy perspectives. Cambridge Univ. Press, Cambridge, UK, 664 pp. 

  40. AustJ. Soil Res. L Zwieten Van 48 555 2010 10.1071/SR10004 Van Zwieten L., Kimber S., Morris S., Downie A., Berger E., Rust J. & Scheer C. 2010. Influence of biochars on flux of N2O and CO2from Ferrosol. AustJ. Soil Res. 48: 555-568. 

  41. AgricEcosyst. Environ. E Verhoeven 191 27 2014 10.1016/j.agee.2014.03.008 Verhoeven E. & Six J. 2014. Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: an assessment across two years. AgricEcosyst. Environ. 191: 27-38. 

  42. Soil Biol. Biochem. F Yan 28 617 1996 10.1016/0038-0717(95)00180-8 Yan F., Schubert S. & Mengel K. 1996. Soil pH increase due to biological decarboxylation of organic anions. Soil Biol. Biochem. 28: 617-624. 

  43. JSoil Sediment J Yuan 11 741 2011 10.1007/s11368-011-0365-0 Yuan J., Xu R., Qian W. & Wang R. 2011a. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. JSoil Sediment 11: 741-750. 

  44. BioresTechnol. J Yuan 102 3488 2011 Yuan J., Xu R. & Zhang, H. 2011b. The forms of alkalis in the biochar produced from crop residues at different temperatures. BioresTechnol. 102: 3488-3497. 

  45. AgrEcosyst. Environ. A Zhang 139 469 2010 10.1016/j.agee.2010.09.003 Zhang A., Cui L., Pan G., Li L., Hussain Q., Zhang X., Zheng J. & Crowley D. 2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. AgrEcosyst. Environ. 139: 469-475. 

  46. Field Crop Res. A Zhang 127 153 2012 10.1016/j.fcr.2011.11.020 Zhang A., Bian R., Pan G., Cui L., Hussain Q., Li L., Zheng J., Zheng J., Zhang X., Han X. & Yu X. 2012. Effects of biochar amendments on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles. Field Crop Res. 127: 153-160. 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로