$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Biochar DOM for plant promotion but not residual biochar for metal immobilization depended on pyrolysis temperature

The Science of the total environment, v.662, 2019년, pp.571 - 580  

Bian, Rongjun (Ecosystem and Environment of Agriculture and Center of Biomass and Biochar Green Technology, Nanjing Agricultural University) ,  Joseph, Stephen (Ecosystem and Environment of Agriculture and Center of Biomass and Biochar Green Technology, Nanjing Agricultural University) ,  Shi, Wei (Ecosystem and Environment of Agriculture and Center of Biomass and Biochar Green Technology, Nanjing Agricultural University) ,  Li, Lu (Ecosystem and Environment of Agriculture and Center of Biomass and Biochar Green Technology, Nanjing Agricultural University) ,  Taherymoosavi, Sarasadat (School of Materials Science & Engineering, University of New South Wales) ,  Pan, Genxing (Ecosystem and Environment of Agriculture and Center of Biomass and Biochar Green Technology, Nanjing Agricultural University)

Abstract AI-Helper 아이콘AI-Helper

Abstract While biochar on metal immobilization was well understood, a small pool of dissolvable organic matter (DOM) from biochar was recently recognized as a bioactive agent for plant growth promotion. However, how the molecular composition and plant effects of this fraction and the performance fo...

주제어

참고문헌 (70)

  1. Chemosphere Ahmad 99 3 19 2014 10.1016/j.chemosphere.2013.10.071 Biochar as a sorbent for contaminant management in soil and water: a review 

  2. Geoderma Archanjo 294 70 2017 10.1016/j.geoderma.2017.01.037 Nanoscale analyses of the surface structure and composition of biochars extracted from field trials or after co-composting using advanced analytical electron microscopy 

  3. Environ. Pollut. Beesley 158 6 2282 2010 10.1016/j.envpol.2010.02.003 Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil 

  4. Ecol. Eng. Bian 58 378 2013 10.1016/j.ecoleng.2013.07.031 Biochar soil amendment as a solution to prevent Cd-tainted rice from China: results from a cross-site field experiment 

  5. J. Hazard. Mater. Bian 272 121 2014 10.1016/j.jhazmat.2014.03.017 A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment 

  6. Environ. Sci. Pollut. Res. Bian 23 10 10028 2016 10.1007/s11356-016-6214-3 Cd immobilization in a contaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar 

  7. J. Anal. Appl. Pyrolysis Bian 119 52 2016 10.1016/j.jaap.2016.03.018 Pyrolysis of crop residues in a mobile bench-scale pyrolyser: product characterization and environmental performance 

  8. Biomass Bioenergy Bian 118 32 2018 10.1016/j.biombioe.2018.08.003 Pyrolysis of contaminated wheat straw to stabilize toxic metals in biochar but recycle the extract for agricultural use 

  9. Plant Cell Bonaventure 15 1020 2003 10.1105/tpc.008946 Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth 

  10. Biometals Chaney 17 549 2004 10.1023/B:BIOM.0000045737.85738.cf An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks 

  11. Bioresour. Technol. Chen 164 47 2014 10.1016/j.biortech.2014.04.048 Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge 

  12. Sci. Total Environ. Chen 541 1489 2016 10.1016/j.scitotenv.2015.10.052 Low uptake affinity cultivars with biochar to tackle Cd-tainted rice-a field study over four rice seasons in Hunan, China 

  13. J. Environ. Manag. Chen 222 76 2018 10.1016/j.jenvman.2018.05.004 Effects of biochar on availability and plant uptake of heavy metals-a meta-analysis 

  14. Int. J. Agric. Sustain. Clare 12 4 440 2014 10.1080/14735903.2014.927711 From rhetoric to reality: farmer perspectives on the economic potential of biochar in China 

  15. GCB Bioenergy Clare 7 6 1272 2015 10.1111/gcbb.12220 Competing uses for China's straw: the economic and carbon abatement potential of biochar 

  16. J. Anal. Appl. Pyrolysis E 112 394 2015 10.1016/j.jaap.2015.02.021 Chemical composition and potential bioactivity of volatile from fast pyrolysis of rice husk 

  17. Bioresour. Technol. Enders 114 644 2012 10.1016/j.biortech.2012.03.022 Characterization of biochars to evaluate recalcitrance and agronomic performance 

  18. Phytochemistry Farag 67 2262 2006 10.1016/j.phytochem.2006.07.021 GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants 

  19. Carbon Manag. Fidel 8 2 215 2017 10.1080/17583004.2017.1306408 Commentary on ‘current economic obstacles to biochar use in agriculture and climate change mitigation’ regarding uncertainty, context-specificity and alternative value sources 

  20. Geoderma Gondar 149 3 272 2009 10.1016/j.geoderma.2008.12.005 Copper binding by olive mill solid waste and its organic matter fractions 

  21. Eur. J. Soil Sci. Graber 65 1 162 2014 10.1111/ejss.12071 Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe 

  22. Plant Soil Graber 395 21 2015 10.1007/s11104-015-2524-3 A humic substances product extracted from biochar reduces Arabidopsis root hair density and length under P-sufficient and P-starvation conditions 

  23. Breed. Sci. Gu 66 161 2016 10.1270/jsbbs.66.161 Analyses of phenotype and ARGOS and ASY1 expression in a ploidy Chinese cabbage series derived from one haploid 

  24. Soil Use Manag. Gunes 31 4 429 2015 10.1111/sum.12205 Variations in mineral element concentrations of poultry manure biochar obtained at different pyrolysis temperatures, and their effects on crop growth and mineral nutrition 

  25. Nat. Commun. Hagemann 8 1 1089 2017 10.1038/s41467-017-01123-0 Organic coating on biochar explains its nutrient retention and stimulation of soil fertility 

  26. Soil Tillage Res. Hagner 163 224 2016 10.1016/j.still.2016.06.006 The effects of birch (Betula spp.) biochar and pyrolysis temperature on soil properties and plant growth 

  27. Environ. Sci. Technol. Hale 46 5 2830 2012 10.1021/es203984k Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars 

  28. Sci. Total Environ. Hatami 571 275 2016 10.1016/j.scitotenv.2016.07.184 Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants 

  29. GCB Bioenergy He 9 4 743 2017 10.1111/gcbb.12376 Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis 

  30. Sci. Total Environ. Huang 646 220 2019 10.1016/j.scitotenv.2018.07.282 Application potential of biochar in environment: insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals 

  31. Chemosphere Igalavithana 174 593 2017 10.1016/j.chemosphere.2017.01.148 Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils 

  32. Crit. Rev. Environ. Sci. Technol. Inyang 46 4 406 2016 10.1080/10643389.2015.1096880 A review of biochar as a low-cost adsorbent for aqueous heavy metal removal 

  33. Soil Biol. Biochem. Jaiswal 69 110 2014 10.1016/j.soilbio.2013.10.051 Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration 

  34. Joseph 443 2016 Current Developments in Biotechnology and Bioengineering: Solid Waste Management Biochar production from agricultural and forestry wastes and microbial interactions 

  35. Sci. Rep. Kammann 5 2015 Plant growth improvement mediated by nitrate capture in co-composted biochar 

  36. Front. Ecol. Environ. Lehmann 5 7 381 2007 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 Bio-energy in the black 

  37. Lehmann 2015 Biochar for Environmental Management: Science, Technology and Implementation 

  38. North. Hortic. Li 6 207 2016 The key technology and cost benefit analysis of annual safe production of Chinese cabbage 

  39. Chemosphere Lin 87 2 151 2012 10.1016/j.chemosphere.2011.12.007 Water extractable organic carbon in untreated and chemical treated biochars 

  40. Plant Soil Liu 373 1-2 583 2013 10.1007/s11104-013-1806-x Biochar's effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data 

  41. Bioresources Lou 11 1 249 2016 Water extract from straw biochar used for plant growth promotion: an initial test 

  42. Lu 2000 Methods of Soil and Agro-chemical Analysis 

  43. Biomass Bioenergy Mcbeath 60 121 2014 10.1016/j.biombioe.2013.11.002 The influence of feedstock and production temperature on biochar carbon chemistry: a solid-state 13C NMR study 

  44. MEE (Ministry of Ecology and Environment of the People's Republic of China) 

  45. MEP and MLR (Ministry of Environmental Proteciton and Land & Resources of the People's Republic of China) 

  46. Plant Soil Park 348 1-2 439 2011 10.1007/s11104-011-0948-y Biochar reduces the bioavailability and phytotoxicity of heavy metals 

  47. J. Plant Nutr. Soil Sci. Prakongkep 178 5 732 2015 10.1002/jpln.201500001 Forms and solubility of plant nutrient elements in tropical plant waste biochars 

  48. Adv. Biol. Res. Preethi 4 122 2010 Antimicrobial and antioxidant efficacy of some medicinal plants against food borne pathogens 

  49. Carbon Qu 96 759 2016 10.1016/j.carbon.2015.09.106 Chemical and structural properties of dissolved black carbon released from biochars 

  50. J. Adv. Pharm. Res. Reda 1 3 155 2017 Chemical constituents of Euphorbia sanctae-catharinae fayed essential oil: a comparative study of hydro-distillation and microwave-assisted extraction 

  51. Biomass Bioenergy Rittl 117 1 2018 10.1016/j.biombioe.2018.07.004 Greenhouse gas emissions from soil amended with agricultural residue biochars: effects of feedstock type, production temperature and soil moisture 

  52. J. Chem. Ecol. Rubalcava 33 147 2007 10.1007/s10886-006-9208-7 Pentacyclic triterpenes with selective bioactivity from Sebastiania adenophora leaves, Euphorbiaceae 

  53. J. Environ. Manag. Subedi 166 73 2016 10.1016/j.jenvman.2015.10.007 Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: influence of pyrolysis temperature and feedstock type 

  54. Sci. Hortic. Sun 119 1 2008 10.1016/j.scienta.2008.06.030 Molecular cloning and characterization of nitrate reductase gene from non-heading Chinese cabbage 

  55. Sci. Total Environ. Sun 576 858 2017 10.1016/j.scitotenv.2016.10.095 The molecular properties of biochar carbon released in dilute acidic solution and its effects on maize seed germination 

  56. J. Anal. Appl. Pyrolysis Taherymoosavi 120 441 2016 10.1016/j.jaap.2016.06.017 Characterization of organic compounds in a mixed feedstock biochar generated from Australian agricultural residues 

  57. Plant Physiol. Biochem. Tang 70 14 2013 10.1016/j.plaphy.2013.04.027 Genotypic differences in nitrate uptake, translocation and assimilation of two Chinese cabbage cultivars [Brassica campestris L. ssp. Chinensis (L.)] 

  58. Sci. Hortic. Tang 201 92 2016 10.1016/j.scienta.2016.01.040 Genotypic differences in cadmium and nitrate co-accumulation among the Chinese cabbage genotypes under field conditions 

  59. Biomass Bioenergy Tushar 37 97 2012 10.1016/j.biombioe.2011.12.027 Production, characterization and reactivity studies of chars produced by the isothermal pyrolysis of flax straw 

  60. J. Hazard. Mater. Uchimiya 190 1-3 432 2011 10.1016/j.jhazmat.2011.03.063 Screening biochars for heavy metal retention in soil: role of oxygen functional groups 

  61. Ullrich 229e248 2002 Salinity: Environment-Plants-Molecules Salinity and nitrogen nutrition 

  62. Agric. Ecosyst. Environ. Valdrighi 58 2-3 133 1996 10.1016/0167-8809(96)01031-6 Effects of compost-derived humic acids on vegetable biomass production and microbial growth within a plant (Cichorium intybus)-soil system: a comparative study 

  63. Wang 2006 Principles and Technology of Plant Physiological and Biochemical 

  64. Environ. Sci. Pollut. Res. Wang 22 4 2837 2015 10.1007/s11356-014-3525-0 Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings 

  65. Environ. Sci. Pollut. Res. Wang 25 10 9683 2018 10.1007/s11356-018-1245-6 An assessment of emergy, energy, and cost-benefits of grain production over 6 years following a biochar amendment in a rice paddy from China 

  66. J. Soil Sci. Wang 6 556 2018 Effects on yield, quality and nutrients of water spinach by organic/inorganic water-soluble fertilizer based on bioactive extracts from biomass pyrolysis. Chinese 

  67. Bull. Environ. Contam. Toxicol. Wei 2019 10.1007/s00128-018-2392-7 Pyrolysis temperature-dependent changes in the characteristics of biochar-borne dissolved organic matter and its copper binding properties 

  68. Biomass Bioenergy Wu 47 268 2012 10.1016/j.biombioe.2012.09.034 Chemical characterization of rice straw-derived biochar for soil amendment 

  69. Front. Plant Sci. Yuan 8 1624 2017 10.3389/fpls.2017.01624 Organic molecules from biochar leacheates have a positive effect on rice seedling cold tolerance 

  70. Food Rev. Int. Zhou 16 1 61 2000 10.1081/FRI-100100282 Nitrate and nitrite contamination in vegetables in China 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로