$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice 원문보기

Scientific reports, v.7, 2017년, pp.4159 -   

Ohmori, Tsukasa (Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, 329-0498 Japan) ,  Nagao, Yasumitsu (Center for Experimental Medicine, Jichi Medical University, Tochigi, 329-0498 Japan) ,  Mizukami, Hiroaki (Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi, 329-0498 Japan) ,  Sakata, Asuka (Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, 329-0498 Japan) ,  Muramatsu, Shin-ichi (Department of Neurology, Jichi Medical University School of Medicine, Tochigi, 329-0498 Japan) ,  Ozawa, Keiya (The Institute of Medical Science, The University of Tokyo, Tokyo, 108-0071 Japan) ,  Tominaga, Shin-ichi (Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, 329-0498 Japan) ,  Hanazono, Yutaka (Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, 329-0498 Japan) ,  Nishimura, Satoshi (Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, 329-0498 Japan) ,  Nureki, Osamu (Department of Biological Sciences, Graduate School of) ,  Sakata, Yoichi

Abstract AI-Helper 아이콘AI-Helper

Haemophilia B, a congenital haemorrhagic disease caused by mutations in coagulation factor IX gene (F9), is considered an appropriate target for genome editing technology. Here, we describe treatment strategies for haemophilia B mice using the clustered regularly interspaced short palindromic repeat...

참고문헌 (39)

  1. 1. Young G New challenges in hemophilia: long-term outcomes and complications Hematology Am Soc Hematol Educ Program 2012 2012 362 368 23233605 

  2. 2. Manco-Johnson MJ Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia The New England journal of medicine 2007 357 535 544 10.1056/NEJMoa067659 17687129 

  3. 3. Hsu PD Lander ES Zhang F Development and applications of CRISPR-Cas9 for genome engineering Cell 2014 157 1262 1278 10.1016/j.cell.2014.05.010 24906146 

  4. 4. Jiang W Marraffini LA CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems Annu Rev Microbiol 2015 69 209 228 10.1146/annurev-micro-091014-104441 26209264 

  5. 5. Doudna JA Charpentier E Genome editing. The new frontier of genome engineering with CRISPR-Cas9 Science 2014 346 1258096 10.1126/science.1258096 25430774 

  6. 6. Mali P Esvelt KM Church GM Cas9 as a versatile tool for engineering biology Nat Methods 2013 10 957 963 10.1038/nmeth.2649 24076990 

  7. 7. Long C Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA Science 2014 345 1184 1188 10.1126/science.1254445 25123483 

  8. 8. Mianne J Correction of the auditory phenotype in C57BL/6N mice via CRISPR/Cas9-mediated homology directed repair Genome Med 2016 8 16 10.1186/s13073-016-0273-4 26876963 

  9. 9. Lanphier E Urnov F Haecker SE Werner M Smolenski J Don’t edit the human germ line Nature 2015 519 410 411 10.1038/519410a 25810189 

  10. 10. Vartak SV Raghavan SC Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing FEBS J 2015 282 4289 4294 10.1111/febs.13416 26290158 

  11. 11. Long C Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy Science 2016 351 400 403 10.1126/science.aad5725 26721683 

  12. 12. Nelson CE In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy Science 2016 351 403 407 10.1126/science.aad5143 26721684 

  13. 13. Tabebordbar M In vivo gene editing in dystrophic mouse muscle and muscle stem cells Science 2016 351 407 411 10.1126/science.aad5177 26721686 

  14. 14. Li T Miller CH Payne AB Craig Hooper W The CDC Hemophilia B mutation project mutation list: a new online resource Mol Genet Genomic Med 2013 1 238 245 10.1002/mgg3.30 24498619 

  15. 15. Guan Y CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse EMBO molecular medicine 2016 8 477 488 10.15252/emmm.201506039 26964564 

  16. 16. Mimuro J Minimizing the inhibitory effect of neutralizing antibody for efficient gene expression in the liver with adeno-associated virus 8 vectors Molecular therapy: the journal of the American Society of Gene Therapy 2013 21 318 323 10.1038/mt.2012.258 23247100 

  17. 17. Ran FA In vivo genome editing using Staphylococcus aureus Cas9 Nature 2015 520 186 191 10.1038/nature14299 25830891 

  18. 18. Fu Y High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells Nat Biotechnol 2013 31 822 826 10.1038/nbt.2623 23792628 

  19. 19. Pattanayak V High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity Nat Biotechnol 2013 31 839 843 10.1038/nbt.2673 23934178 

  20. 20. Renkawitz J Lademann CA Jentsch S Mechanisms and principles of homology search during recombination Nat Rev Mol Cell Biol 2014 15 369 383 10.1038/nrm3805 24824069 

  21. 21. Wang L Wang H Bell P McMenamin D Wilson JM Hepatic gene transfer in neonatal mice by adeno-associated virus serotype 8 vector Human gene therapy 2012 23 533 539 10.1089/hum.2011.183 22098408 

  22. 22. Sehgal A An RNAi therapeutic targeting antithrombin to rebalance the coagulation system and promote hemostasis in hemophilia Nature medicine 2015 21 492 497 10.1038/nm.3847 25849132 

  23. 23. Ohmori T Mizukami H Ozawa K Sakata Y Nishimura S New approaches to gene and cell therapy for hemophilia Journal of thrombosis and haemostasis: JTH 2015 13 Suppl 1 S133 142 10.1111/jth.12926 26149014 

  24. 24. Chu VT Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells Nat Biotechnol 2015 33 543 548 10.1038/nbt.3198 25803306 

  25. 25. Maruyama T Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining Nat Biotechnol 2015 33 538 542 10.1038/nbt.3190 25798939 

  26. 26. Suzuki K In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration Nature 2016 540 144 149 10.1038/nature20565 27851729 

  27. 27. Zetsche B Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system Cell 2015 163 759 771 10.1016/j.cell.2015.09.038 26422227 

  28. 28. Asokan A Schaffer DV Samulski RJ The AAV vector toolkit: poised at the clinical crossroads Molecular therapy: the journal of the American Society of Gene Therapy 2012 20 699 708 10.1038/mt.2011.287 

  29. 29. Lisowski L Tay SS Alexander IE Adeno-associated virus serotypes for gene therapeutics Curr Opin Pharmacol 2015 24 59 67 10.1016/j.coph.2015.07.006 26291407 

  30. 30. Mimuro J The prevalence of neutralizing antibodies against adeno-associated virus capsids is reduced in young Japanese individuals Journal of medical virology 2014 86 1990 1997 10.1002/jmv.23818 24136735 

  31. 31. Li H In vivo genome editing restores haemostasis in a mouse model of haemophilia Nature 2011 475 217 221 10.1038/nature10177 21706032 

  32. 32. Anguela XM Robust ZFN-mediated genome editing in adult hemophilic mice Blood 2013 122 3283 3287 10.1182/blood-2013-04-497354 24085764 

  33. 33. Sharma R In vivo genome editing of the albumin locus as a platform for protein replacement therapy Blood 2015 126 1777 1784 10.1182/blood-2014-12-615492 26297739 

  34. 34. Gaj T Gersbach CA Barbas CF 3rd ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering Trends Biotechnol 2013 31 397 405 10.1016/j.tibtech.2013.04.004 23664777 

  35. 35. Zhang F Wen Y Guo X CRISPR/Cas9 for genome editing: progress, implications and challenges Hum Mol Genet 2014 23 R40 46 10.1093/hmg/ddu125 24651067 

  36. 36. Dai WJ CRISPR-Cas9 for in vivo Gene Therapy: Promise and Hurdles Mol Ther Nucleic Acids 2016 5 e349 10.1038/mtna.2016.58 28131272 

  37. 37. Nakai H Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo J Virol 2001 75 6969 6976 10.1128/JVI.75.15.6969-6976.2001 11435577 

  38. 38. Srivastava A Carter BJ AAV Infection: Protection from Cancer Human gene therapy 2017 28 323 327 10.1089/hum.2016.147 27832705 

  39. 39. Matsumoto T Nogami K Ogiwara K Shima M A modified thrombin generation test for investigating very low levels of factor VIII activity in hemophilia A Int J Hematol 2009 90 576 582 10.1007/s12185-009-0450-y 19937483 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로