최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Scientific reports, v.7, 2017년, pp.16650 -
Jacobs, Eva Z. (Center for Medical Genetics, Ghent University, Ghent University Hospital, Ghent, Belgium) , Warrier, Sharat (Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium) , Volders, Pieter-Jan (Center for Medical Genetics, Ghent University, Ghent University Hospital, Ghent, Belgium) , D’haene, Eva (Center for Medical Genetics, Ghent University, Ghent University Hospital, Ghent, Belgium) , Van Lombergen, Eva (Center for Medical Genetics, Ghent University, Ghent University Hospital, Ghent, Belgium) , Vantomme, Lies (Center for Medical Genetics, Ghent University, Ghent University Hospital, Ghent, Belgium) , Van der Jeught, Margot (Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium) , Heindryckx, Björn (Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium) , Menten, Björn (Center for Medical Genetics, Ghent University, Ghent University Hospital, Ghent, Belgium) , Vergult, Sarah (Center for Medical Genetics, Ghent University, Ghent University Hospital,)
The combination of genome-edited human embryonic stem cells (hESCs) and subsequent neural differentiation is a powerful tool to study neurodevelopmental disorders. Since the naïve state of pluripotency has favourable characteristics for efficient genome-editing, we optimized a workflow for the ...
1. Evans MJ Kaufman MH Establishment in culture of pluripotential cells from mouse embryos Nature 1981 292 154 156 10.1038/292154a0 7242681
2. Thomson JA Embryonic stem cell lines derived from human blastocysts Science 1998 282 1145 1147 10.1126/science.282.5391.1145 9804556
3. Tesar PJ New cell lines from mouse epiblast share defining features with human embryonic stem cells Nature 2007 448 196 199 10.1038/nature05972 17597760
4. Brons IG Derivation of pluripotent epiblast stem cells from mammalian embryos Nature 2007 448 191 195 10.1038/nature05950 17597762
5. Nichols J Smith A The origin and identity of embryonic stem cells Development 2011 138 3 8 10.1242/dev.050831 21138972
6. Duggal G Alternative Routes to Induce Naive Pluripotency in Human Embryonic Stem Cells Stem Cells 2015 33 2686 2698 10.1002/stem.2071 26108678
7. Gafni O Derivation of novel human ground state naive pluripotent stem cells Nature 2013 504 282 286 10.1038/nature12745 24172903
8. Hanna J Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs Proc Natl Acad Sci USA 2010 107 9222 9227 10.1073/pnas.1004584107 20442331
9. Chan YS Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast Cell Stem Cell 2013 13 663 675 10.1016/j.stem.2013.11.015 24315441
10. Ware CB Derivation of naive human embryonic stem cells Proc Natl Acad Sci USA 2014 111 4484 4489 10.1073/pnas.1319738111 24623855
11. Theunissen TW Systematic identification of culture conditions for induction and maintenance of naive human pluripotency Cell Stem Cell 2014 15 471 487 10.1016/j.stem.2014.07.002 25090446
12. Gu Q Rapid conversion of human ESCs into mouse ESC-like pluripotent state by optimizing culture conditions Protein Cell 2012 3 71 79 10.1007/s13238-012-2007-8 22271597
13. Avior Y Sagi I Benvenisty N Pluripotent stem cells in disease modelling and drug discovery Nat Rev Mol Cell Biol 2016 17 170 182 10.1038/nrm.2015.27 26818440
14. Chen YW A three-dimensional model of human lung development and disease from pluripotent stem cells Nat Cell Biol 2017 19 542 549 10.1038/ncb3510 28436965
15. Fonoudi H Bosman A Turning Potential Into Action: Using Pluripotent Stem Cells to Understand Heart Development and Function in Health and Disease Stem Cells Transl Med 2017 6 1452 1457 10.1002/sctm.16-0476 28337852
16. Choudhary P Directing Differentiation of Pluripotent Stem Cells Toward Retinal Pigment Epithelium Lineage Stem Cells Transl Med 2017 6 490 501 10.5966/sctm.2016-0088 28191760
17. Saurat NG Livesey FJ Moore S Cortical Differentiation of Human Pluripotent Cells for In Vitro Modeling of Alzheimer’s Disease Methods Mol Biol 2016 1303 267 278 10.1007/978-1-4939-2627-5_16 26235073
18. Wang P CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells Mol Autism 2017 8 11 10.1186/s13229-017-0124-1 28321286
19. Kotini AG Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells Nat Biotechnol 2015 33 646 655 10.1038/nbt.3178 25798938
20. Liao J Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells Nat Genet 2015 47 469 478 10.1038/ng.3258 25822089
21. Brouns SJ Small CRISPR RNAs guide antiviral defense in prokaryotes Science 2008 321 960 964 10.1126/science.1159689 18703739
22. Jinek M A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science 2012 337 816 821 10.1126/science.1225829 22745249
23. Doudna JA Charpentier E Genome editing. The new frontier of genome engineering with CRISPR-Cas9 Science 2014 346 1258096 10.1126/science.1258096 25430774
24. Ran FA Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity Cell 2013 154 1380 1389 10.1016/j.cell.2013.08.021 23992846
25. Buecker C A murine ESC-like state facilitates transgenesis and homologous recombination in human pluripotent stem cells Cell Stem Cell 2010 6 535 546 10.1016/j.stem.2010.05.003 20569691
26. Dodsworth BT Flynn R Cowley SA The Current State of Naive Human Pluripotency Stem Cells 2015 33 3181 3186 10.1002/stem.2085 26119873
27. Yang Y Naive Induced Pluripotent Stem Cells Generated From beta-Thalassemia Fibroblasts Allow Efficient Gene Correction With CRISPR/Cas9 Stem Cells Transl Med 2016 5 267 10.5966/sctm.2015-0157erratum 26819338
28. Lin N An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment Mol Cell 2014 53 1005 1019 10.1016/j.molcel.2014.01.021 24530304
29. Mali P RNA-guided human genome engineering via Cas9 Science 2013 339 823 826 10.1126/science.1232033 23287722
30. Warrier S Direct comparison of distinct naive pluripotent states in human embryonic stem cells Nat Commun 2017 8 15055 10.1038/ncomms15055 28429706
31. Nichols J Smith A Naive and primed pluripotent states Cell Stem Cell 2009 4 487 492 10.1016/j.stem.2009.05.015 19497275
32. Nair G Abranches E Guedes AM Henrique D Raj A Heterogeneous lineage marker expression in naive embryonic stem cells is mostly due to spontaneous differentiation Sci Rep 2015 5 13339 10.1038/srep13339 26292941
33. Bernhart SH Hofacker IL Stadler PF Local RNA base pairing probabilities in large sequences Bioinformatics 2006 22 614 615 10.1093/bioinformatics/btk014 16368769
34. Willems E Leyns L Vandesompele J Standardization of real-time PCR gene expression data from independent biological replicates Anal Biochem 2008 379 127 129 10.1016/j.ab.2008.04.036 18485881
35. Byrne SM Mali P Church GM Genome editing in human stem cells Methods Enzymol 2014 546 119 138 10.1016/B978-0-12-801185-0.00006-4 25398338
36. Miyaoka Y Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing Sci Rep 2016 6 23549 10.1038/srep23549 27030102
37. Horii T Tamura D Morita S Kimura M Hatada I Generation of an ICF syndrome model by efficient genome editing of human induced pluripotent stem cells using the CRISPR system Int J Mol Sci 2013 14 19774 19781 10.3390/ijms141019774 24084724
38. Horii T Genome engineering of mammalian haploid embryonic stem cells using the Cas9/RNA system PeerJ 2013 1 e230 10.7717/peerj.230 24432195
39. Ding Q Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs Cell Stem Cell 2013 12 393 394 10.1016/j.stem.2013.03.006 23561441
40. Kim S Kim D Cho SW Kim J Kim JS Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins Genome Res 2014 24 1012 1019 10.1101/gr.171322.113 24696461
41. Liang X Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection J Biotechnol 2015 208 44 53 10.1016/j.jbiotec.2015.04.024 26003884
42. Kim SJ A homozygous Keap1-knockout human embryonic stem cell line generated using CRISPR/Cas9 mediates gene targeting Stem Cell Res 2017 19 52 54 10.1016/j.scr.2016.12.028 28413007
43. Tsai SQ GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases Nat Biotechnol 2015 33 187 197 10.1038/nbt.3117 25513782
44. Kim D Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells Nat Methods 2015 12 237 10.1038/nmeth.3284 25664545
45. Cameron P Mapping the genomic landscape of CRISPR-Cas9 cleavage Nat Methods 2017 14 600 10.1038/nmeth.4284 28459459
46. Tsai SQ CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR Cas9 nuclease off-targets Nat Methods 2017 14 607 + 10.1038/nmeth.4278 28459458
47. Goyal A Challenges of CRISPR/Cas9 applications for long non-coding RNA genes Nucleic Acids Res 2017 45 e12 28180319
48. Li, R., Zhu, H. & Luo, Y. Understanding the Functions of Long Non-Coding RNAs through Their Higher-Order Structures. Int J Mol Sci 17 , 10.3390/ijms17050702 (2016).
49. Lee JH Lineage-Specific Differentiation Is Influenced by State of Human Pluripotency Cell Rep 2017 19 20 35 10.1016/j.celrep.2017.03.036 28380358
50. De Leeneer K Flexible, scalable, and efficient targeted resequencing on a benchtop sequencer for variant detection in clinical practice Hum Mutat 2015 36 379 387 10.1002/humu.22739 25504618
51. Boel A BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment Sci Rep 2016 6 30330 10.1038/srep30330 27461955
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.