$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] CRISPR/Cas9-mediated genome editing in naïve human embryonic stem cells 원문보기

Scientific reports, v.7, 2017년, pp.16650 -   

Jacobs, Eva Z. (Center for Medical Genetics, Ghent University, Ghent University Hospital, Ghent, Belgium) ,  Warrier, Sharat (Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium) ,  Volders, Pieter-Jan (Center for Medical Genetics, Ghent University, Ghent University Hospital, Ghent, Belgium) ,  D’haene, Eva (Center for Medical Genetics, Ghent University, Ghent University Hospital, Ghent, Belgium) ,  Van Lombergen, Eva (Center for Medical Genetics, Ghent University, Ghent University Hospital, Ghent, Belgium) ,  Vantomme, Lies (Center for Medical Genetics, Ghent University, Ghent University Hospital, Ghent, Belgium) ,  Van der Jeught, Margot (Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium) ,  Heindryckx, Björn (Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium) ,  Menten, Björn (Center for Medical Genetics, Ghent University, Ghent University Hospital, Ghent, Belgium) ,  Vergult, Sarah (Center for Medical Genetics, Ghent University, Ghent University Hospital,)

Abstract AI-Helper 아이콘AI-Helper

The combination of genome-edited human embryonic stem cells (hESCs) and subsequent neural differentiation is a powerful tool to study neurodevelopmental disorders. Since the naïve state of pluripotency has favourable characteristics for efficient genome-editing, we optimized a workflow for the ...

참고문헌 (51)

  1. 1. Evans MJ Kaufman MH Establishment in culture of pluripotential cells from mouse embryos Nature 1981 292 154 156 10.1038/292154a0 7242681 

  2. 2. Thomson JA Embryonic stem cell lines derived from human blastocysts Science 1998 282 1145 1147 10.1126/science.282.5391.1145 9804556 

  3. 3. Tesar PJ New cell lines from mouse epiblast share defining features with human embryonic stem cells Nature 2007 448 196 199 10.1038/nature05972 17597760 

  4. 4. Brons IG Derivation of pluripotent epiblast stem cells from mammalian embryos Nature 2007 448 191 195 10.1038/nature05950 17597762 

  5. 5. Nichols J Smith A The origin and identity of embryonic stem cells Development 2011 138 3 8 10.1242/dev.050831 21138972 

  6. 6. Duggal G Alternative Routes to Induce Naive Pluripotency in Human Embryonic Stem Cells Stem Cells 2015 33 2686 2698 10.1002/stem.2071 26108678 

  7. 7. Gafni O Derivation of novel human ground state naive pluripotent stem cells Nature 2013 504 282 286 10.1038/nature12745 24172903 

  8. 8. Hanna J Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs Proc Natl Acad Sci USA 2010 107 9222 9227 10.1073/pnas.1004584107 20442331 

  9. 9. Chan YS Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast Cell Stem Cell 2013 13 663 675 10.1016/j.stem.2013.11.015 24315441 

  10. 10. Ware CB Derivation of naive human embryonic stem cells Proc Natl Acad Sci USA 2014 111 4484 4489 10.1073/pnas.1319738111 24623855 

  11. 11. Theunissen TW Systematic identification of culture conditions for induction and maintenance of naive human pluripotency Cell Stem Cell 2014 15 471 487 10.1016/j.stem.2014.07.002 25090446 

  12. 12. Gu Q Rapid conversion of human ESCs into mouse ESC-like pluripotent state by optimizing culture conditions Protein Cell 2012 3 71 79 10.1007/s13238-012-2007-8 22271597 

  13. 13. Avior Y Sagi I Benvenisty N Pluripotent stem cells in disease modelling and drug discovery Nat Rev Mol Cell Biol 2016 17 170 182 10.1038/nrm.2015.27 26818440 

  14. 14. Chen YW A three-dimensional model of human lung development and disease from pluripotent stem cells Nat Cell Biol 2017 19 542 549 10.1038/ncb3510 28436965 

  15. 15. Fonoudi H Bosman A Turning Potential Into Action: Using Pluripotent Stem Cells to Understand Heart Development and Function in Health and Disease Stem Cells Transl Med 2017 6 1452 1457 10.1002/sctm.16-0476 28337852 

  16. 16. Choudhary P Directing Differentiation of Pluripotent Stem Cells Toward Retinal Pigment Epithelium Lineage Stem Cells Transl Med 2017 6 490 501 10.5966/sctm.2016-0088 28191760 

  17. 17. Saurat NG Livesey FJ Moore S Cortical Differentiation of Human Pluripotent Cells for In Vitro Modeling of Alzheimer’s Disease Methods Mol Biol 2016 1303 267 278 10.1007/978-1-4939-2627-5_16 26235073 

  18. 18. Wang P CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells Mol Autism 2017 8 11 10.1186/s13229-017-0124-1 28321286 

  19. 19. Kotini AG Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells Nat Biotechnol 2015 33 646 655 10.1038/nbt.3178 25798938 

  20. 20. Liao J Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells Nat Genet 2015 47 469 478 10.1038/ng.3258 25822089 

  21. 21. Brouns SJ Small CRISPR RNAs guide antiviral defense in prokaryotes Science 2008 321 960 964 10.1126/science.1159689 18703739 

  22. 22. Jinek M A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science 2012 337 816 821 10.1126/science.1225829 22745249 

  23. 23. Doudna JA Charpentier E Genome editing. The new frontier of genome engineering with CRISPR-Cas9 Science 2014 346 1258096 10.1126/science.1258096 25430774 

  24. 24. Ran FA Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity Cell 2013 154 1380 1389 10.1016/j.cell.2013.08.021 23992846 

  25. 25. Buecker C A murine ESC-like state facilitates transgenesis and homologous recombination in human pluripotent stem cells Cell Stem Cell 2010 6 535 546 10.1016/j.stem.2010.05.003 20569691 

  26. 26. Dodsworth BT Flynn R Cowley SA The Current State of Naive Human Pluripotency Stem Cells 2015 33 3181 3186 10.1002/stem.2085 26119873 

  27. 27. Yang Y Naive Induced Pluripotent Stem Cells Generated From beta-Thalassemia Fibroblasts Allow Efficient Gene Correction With CRISPR/Cas9 Stem Cells Transl Med 2016 5 267 10.5966/sctm.2015-0157erratum 26819338 

  28. 28. Lin N An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment Mol Cell 2014 53 1005 1019 10.1016/j.molcel.2014.01.021 24530304 

  29. 29. Mali P RNA-guided human genome engineering via Cas9 Science 2013 339 823 826 10.1126/science.1232033 23287722 

  30. 30. Warrier S Direct comparison of distinct naive pluripotent states in human embryonic stem cells Nat Commun 2017 8 15055 10.1038/ncomms15055 28429706 

  31. 31. Nichols J Smith A Naive and primed pluripotent states Cell Stem Cell 2009 4 487 492 10.1016/j.stem.2009.05.015 19497275 

  32. 32. Nair G Abranches E Guedes AM Henrique D Raj A Heterogeneous lineage marker expression in naive embryonic stem cells is mostly due to spontaneous differentiation Sci Rep 2015 5 13339 10.1038/srep13339 26292941 

  33. 33. Bernhart SH Hofacker IL Stadler PF Local RNA base pairing probabilities in large sequences Bioinformatics 2006 22 614 615 10.1093/bioinformatics/btk014 16368769 

  34. 34. Willems E Leyns L Vandesompele J Standardization of real-time PCR gene expression data from independent biological replicates Anal Biochem 2008 379 127 129 10.1016/j.ab.2008.04.036 18485881 

  35. 35. Byrne SM Mali P Church GM Genome editing in human stem cells Methods Enzymol 2014 546 119 138 10.1016/B978-0-12-801185-0.00006-4 25398338 

  36. 36. Miyaoka Y Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing Sci Rep 2016 6 23549 10.1038/srep23549 27030102 

  37. 37. Horii T Tamura D Morita S Kimura M Hatada I Generation of an ICF syndrome model by efficient genome editing of human induced pluripotent stem cells using the CRISPR system Int J Mol Sci 2013 14 19774 19781 10.3390/ijms141019774 24084724 

  38. 38. Horii T Genome engineering of mammalian haploid embryonic stem cells using the Cas9/RNA system PeerJ 2013 1 e230 10.7717/peerj.230 24432195 

  39. 39. Ding Q Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs Cell Stem Cell 2013 12 393 394 10.1016/j.stem.2013.03.006 23561441 

  40. 40. Kim S Kim D Cho SW Kim J Kim JS Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins Genome Res 2014 24 1012 1019 10.1101/gr.171322.113 24696461 

  41. 41. Liang X Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection J Biotechnol 2015 208 44 53 10.1016/j.jbiotec.2015.04.024 26003884 

  42. 42. Kim SJ A homozygous Keap1-knockout human embryonic stem cell line generated using CRISPR/Cas9 mediates gene targeting Stem Cell Res 2017 19 52 54 10.1016/j.scr.2016.12.028 28413007 

  43. 43. Tsai SQ GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases Nat Biotechnol 2015 33 187 197 10.1038/nbt.3117 25513782 

  44. 44. Kim D Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells Nat Methods 2015 12 237 10.1038/nmeth.3284 25664545 

  45. 45. Cameron P Mapping the genomic landscape of CRISPR-Cas9 cleavage Nat Methods 2017 14 600 10.1038/nmeth.4284 28459459 

  46. 46. Tsai SQ CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR Cas9 nuclease off-targets Nat Methods 2017 14 607 + 10.1038/nmeth.4278 28459458 

  47. 47. Goyal A Challenges of CRISPR/Cas9 applications for long non-coding RNA genes Nucleic Acids Res 2017 45 e12 28180319 

  48. 48. Li, R., Zhu, H. & Luo, Y. Understanding the Functions of Long Non-Coding RNAs through Their Higher-Order Structures. Int J Mol Sci 17 , 10.3390/ijms17050702 (2016). 

  49. 49. Lee JH Lineage-Specific Differentiation Is Influenced by State of Human Pluripotency Cell Rep 2017 19 20 35 10.1016/j.celrep.2017.03.036 28380358 

  50. 50. De Leeneer K Flexible, scalable, and efficient targeted resequencing on a benchtop sequencer for variant detection in clinical practice Hum Mutat 2015 36 379 387 10.1002/humu.22739 25504618 

  51. 51. Boel A BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment Sci Rep 2016 6 30330 10.1038/srep30330 27461955 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로