$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Conductive properties of methanogenic biofilms 원문보기

Bioelectrochemistry, v.119, 2018년, pp.220 - 226  

Li, Cheng (Corresponding author.) ,  Lesnik, Keaton Larson ,  Liu, Hong

Abstract AI-Helper 아이콘AI-Helper

Abstract Extracellular electron transfer between syntrophic partners needs to be efficiently maintained in methanogenic environments. Direct extracellular electron transfer via electrical current is an alternative to indirect hydrogen transfer but requires construction of conductive extracellular s...

주제어

참고문헌 (41)

  1. Front. Microbiol. Kouzuma 2015 10.3389/fmicb.2015.00477 Microbial interspecies interactions: recent findings in syntrophic consortia 

  2. Nat. Rev. Microbiol. Thauer 6 579 2008 10.1038/nrmicro1931 Methanogenic archaea: ecologically relevant differences in energy conservation 

  3. Environ. Microbiol. Stams 8 371 2006 10.1111/j.1462-2920.2006.00989.x Exocellular electron transfer in anaerobic microbial communities 

  4. Nat. Rev. Microbiol. Stams 7 568 2009 10.1038/nrmicro2166 Electron transfer in syntrophic communities of anaerobic bacteria and archaea 

  5. Appl. Environ. Microbiol. Rotaru 80 4599 2014 10.1128/AEM.00895-14 Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri 

  6. Energy Environ. Sci. Rotaru 7 408 2014 10.1039/C3EE42189A A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane 

  7. Environ. Microbiol. Kato 14 1646 2012 10.1111/j.1462-2920.2011.02611.x Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals 

  8. Front. Microbiol. Shrestha 5 2014 10.3389/fmicb.2014.00237 Plugging in or going wireless: strategies for interspecies electron transfer 

  9. Energy Environ. Sci. Liu 5 8982 2012 10.1039/c2ee22459c Promoting direct interspecies electron transfer with activated carbon 

  10. Curr. Opin. Biotechnol. Malvankar 27 88 2014 10.1016/j.copbio.2013.12.003 Microbial nanowires for bioenergy applications 

  11. Science Summers 330 1413 2010 10.1126/science.1196526 Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria 

  12. Phys. Chem. Chem. Phys. Phan 18 17815 2016 10.1039/C6CP03583C Biofilm as a redox conductor: a systematic study of the moisture and temperature dependence of its electrical properties 

  13. Phys. Chem. Chem. Phys. Yates 17 32564 2015 10.1039/C5CP05152E Thermally activated long range electron transport in living biofilms 

  14. Nat. Nanotechnol. Yates 11 910 2016 10.1038/nnano.2016.186 Measuring conductivity of living Geobacter sulfurreducens biofilms 

  15. Nat. Nanotechnol. Malvankar 11 913 2016 10.1038/nnano.2016.191 Reply to ‘Measuring conductivity of living Geobacter sulfurreducens biofilms’ 

  16. Energy Environ. Sci. Malvankar 5 8651 2012 10.1039/c2ee22330a Lack of cytochrome involvement in long-range electron transport through conductive biofilms and nanowires of Geobacter sulfurreducens 

  17. MBio Malvankar 6 e00084 2015 10.1128/mBio.00084-15 Structural basis for metallic-like conductivity in microbial nanowires 

  18. Nat. Nanotechnol. Malvankar 6 573 2011 10.1038/nnano.2011.119 Tunable metallic-like conductivity in microbial nanowire networks 

  19. Bioresour. Technol. Shrestha 174 306 2014 10.1016/j.biortech.2014.10.004 Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment 

  20. MBio Morita 2 e00159 2011 10.1128/mBio.00159-11 Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates 

  21. PLoS One Li 11 2016 Redox conductivity of current-producing mixed species biofilms 

  22. Appl. Environ. Microbiol. Malvankar 78 5967 2012 10.1128/AEM.01803-12 Electrical conductivity in a mixed-species biofilm 

  23. Appl. Environ. Microbiol. Ruhl 80 6583 2014 10.1128/AEM.01826-14 Probing microbial biofilm communities for coadhesion partners 

  24. FEMS Microbiol. Lett. Li 363 2016 10.1093/femsle/fnw153 Millimeter scale electron conduction through exoelectrogenic mixed species biofilms 

  25. Annu. Rev. Microbiol. Costerton 49 711 1995 10.1146/annurev.mi.49.100195.003431 Microbial biofilms 

  26. Appl. Environ. Microbiol. ten Brummeler 49 1472 1985 10.1128/aem.49.6.1472-1477.1985 Methanogenesis in an upflow anaerobic sludge blanket reactor at pH 6 on an acetate-propionate mixture 

  27. J. Electroanal. Chem. Kankare 322 167 1992 10.1016/0022-0728(92)80074-E In-situ conductance measurement during electropolymerization 

  28. Nucleic Acids Res. Klindworth 2012 Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies 

  29. Nat. Methods Caporaso 7 335 2010 10.1038/nmeth.f.303 QIIME allows analysis of high-throughput community sequencing data 

  30. Bioinformatics Edgar 26 2460 2010 10.1093/bioinformatics/btq461 Search and clustering orders of magnitude faster than BLAST 

  31. ISME J. Hamady 4 17 2010 10.1038/ismej.2009.97 Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data 

  32. Chem. Phys. Dalton 141 143 1990 10.1016/0301-0104(90)80026-T Charge transport in electroactive polymers consisting of fixed molecular redox sites 

  33. Energy Environ. Sci. Strycharz-Glaven 4 4366 2011 10.1039/c1ee01753e On the electrical conductivity of microbial nanowires and biofilms 

  34. Proc. Natl. Acad. Sci. U. S. A. Snider 109 15467 2012 10.1073/pnas.1209829109 Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven 

  35. Energy Environ. Sci. Strycharz-Glaven 5 6250 2012 10.1039/c2ee03056j Reply to the ‘Comment on “On electrical conductivity of microbial nanowires and biofilms”’by NS Malvankar, MT Tuominen and DR Lovley 

  36. Environ. Sci. Technol. Lee 50 12799 2016 10.1021/acs.est.6b04168 The roles of biofilm conductivity and donor substrate kinetics in a mixed-culture biofilm anode 

  37. Phys. Chem. Chem. Phys. Ing 19 21791 2017 10.1039/C7CP03651E Geobacter sulfurreducens pili support ohmic electronic conduction in aqueous solution 

  38. Front. Microbiol. Tan 7 2016 10.3389/fmicb.2016.00980 The low conductivity of Geobacter uraniireducens pili suggests a diversity of extracellular electron transfer mechanisms in the genus Geobacter 

  39. RSC Adv. Adhikari 6 8354 2016 10.1039/C5RA28092C Conductivity of individual Geobacter pili 

  40. MBio Vargas 4 e00105 2013 10.1128/mBio.00210-13 Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens 

  41. Energy Environ. Sci. Yates 9 3544 2016 10.1039/C6EE02106A Toward understanding long-distance extracellular electron transport in an electroautotrophic microbial community 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로